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Neutrinos are Everywhere
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“Wimpy and Abundant”
Neutrinos are Everywhere

• They come from the Big Bang:
– When the Universe was hot, neutrinos were created

equally with any other particles
– They are still left over: ~300 neutrinos per cm3

• They come from the Sun:
– Trillions of neutrinos going through your body every

second
• They are shy:

– If you want to stop them, you need to stack up lead
shield up to three light-years
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Outline

• Introduction
• Neutrinos in the Standard Model
• Evidence for Neutrino Mass
• Solar Neutrinos
• Implications of Neutrino Mass
• Why do we exist?
• Conclusions



Neutrinos in the Standard Model
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Puzzle with Beta Spectrum

• Three-types of
radioactivity: a, b, g

• Both a, g discrete
spectrum because

Ea, g = Ei – Ef

• But b spectrum
continuous

F. A. Scott, Phys. Rev. 48, 391 (1935)

Bohr: At the present stage of atomic theory, however, we may say
that we have no argument, either empirical or theoretical, for
upholding the energy principle in the case of b-ray disintegrations
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Desperate Idea of Pauli
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Three Kinds of Neutrinos

• There are three • And no more
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Neutrinos are Left-handed
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Neutrinos must be Massless

• All neutrinos left-handed fi massless
• If they have mass, can’t go at speed of light.

• Now neutrino right-handed??
fi contradiction fi can’t be massive
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Anti-Neutrinos are Right-handed

• CPT theorem in
quantum field theory
– C: interchange

particles & anti-
particles

– P: parity
– T: time-reversal

• State obtained by CPT
from nL must exist: nR

_
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Other Particles?

• What about other particles?  Electron,
muon, up-quark, down-quark, etc

• We say “weak interaction acts only on left-
handed particles” yet they are massive.

Isn’t this also a contradiction?
No, because of the Higgs condensate:
Bose-Einstein condensate in Universe
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Universe is filled with Higgs

• Empty looking space is filled with Higgs
• Particles bump on it, but not photon because Higgs neutral.
• Can’t go at speed of light (massive), and right-handed and

left-handed particles mix fi no contradiction

But neutrinos can’t
bump because there
isn’t a right-handed
one fi stays massless

0.511 MeV/c2

105 MeV/c2

176,000 MeV/c2
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Standard Model

• Therefore, neutrinos are strictly massless in
the Standard Model of particle physics
Finite mass of neutrinos imply the Standard
Model is incomplete!

• Not just incomplete but probably a lot more
profound
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Neutrinos
from backstage to center stage

• Pauli bet a case of
champagne that noone
will discover neutrinos

• Finally discovered by
Cowan and Reines using a
nuclear reactor in 1958

• Massless Neutrinos in the
Standard Model (‘60s)

• Evidence for neutrino
mass from SuperK (1998)
and SNO (2002)

• First evidence that the
minimal Standard Model
of particle physics is
incomplete!

• 2002 Nobel to pioneers:
Davis and Koshiba



Harvard colloquium 16

Lot of effort since ‘60s

Finally convincing
evidence for “neutrino
oscillation”

Neutrinos appear to
have tiny but finite mass



Evidence for Neutrino Mass
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Super-Kamiokande (SuperK)

• Kamioka Mine in
central Japan

• ~1000m
underground

• 50kt water
• Inner Detector

– 11,200 PMTs
• Outer Detector

– 2,000 PMTs
Michael Smy
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SuperKamiokaNDE
Nucleon Decay Experiment

• pÆe+p0, K+n, etc
– So far not seen
– Atmospheric neutrino

main background

• Cosmic rays isotropic
– Atmospheric neutrino

up-down symmetric
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A half of nm lost!
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Neutrino’s clock

• Time-dilation: the
clock goes slower

• At speed of light v=c,
clock stops

• But something seems
to happen to neutrinos
on their own

Dt = Dt 1 -
v2

c2

• Neutrinos’ clock is
going

• Neutrinos must be
slower than speed of
light

fiNeutrinos must have a
mass
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The Hamiltonian

• The Hamiltonian of a freely-propagating
massive neutrino is simply

• But in quantum mechanics, mass is a matrix
in general.  2¥2 case:

  
H =

r p 2 + m2 ª p +
m2

2p

M2 =
m2

11 m2
12

m2
21 m2

22

Ê 

Ë 
Á 

ˆ 

¯ 
˜ 

M2 1 = m1
2 1

M2 2 = m2
2 2
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Two-Neutrino Oscillation

• When produced (e.g., p+Æm+nm), neutrino is
of a particular type

|nm , t = 1 cosq e-im1
2t / 4 p + 2 sinq e-im2

2t / 4pe-im1
2t / 4 p e-im2

2t / 4 p,t
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Two-Neutrino Oscillation

• When produced (e.g., p+Æm+nm), neutrino is
of a particular type

• No longer 100% nm, partly nt!
• “Survival probability” for nm after t

|nm , t = 1 cosq e-im1
2t / 4 p + 2 sinq e-im2

2t / 4p

  
P = nm nm , t

2
= 1 - sin2 2q sin2 1.27 Dm2c4

eV2
GeV
c r p 

ct
km

Ê 

Ë 
Á 

ˆ 

¯ 
˜ 

e-im1
2t / 4 p e-im2

2t / 4 p,t
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Survival Probability

Half of the up-going
ones get lost

p=1 GeV/c, sin2 2q=1
Dm2=3¥10–3(eV/c2)2
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More cross checks

• Multi-ring events can be used to provide useful
cross checks (Hall, HM)
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More to come

#events if no oscillation
#events observed: 56
MINOS (IL Æ MN) 2005

250km

† 

80.1-5.4
+6.2
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Public Interest in Neutrinos



Harvard colloquium 30



Solar Neutrinos
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How the Sun burns

• The Sun emits light because nuclear fusion
produces a lot of energy

Fn =
2Lsun

25MeV
1

4p (1AU)2 = 7 ⋅1010 sec-1 cm-2
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We don’t get enough
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Neutrino oscillation?

• Can explain the data
• Two major solutions:

– LMA
– LOW/Quasi-Vacuum

(Friedland)

• Biggest systematics is
the solar neutrino flux
calculations

• Problem with the solar
model?

LMA

LOW
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SNO comes to the rescue

• Charged Current:ne

• Neutral Current: ne+nm+nt

• 5.3s difference
fi nm,t are coming from the Sun!

† 

FCC = 1.76 ± 0.05 ± 0.09 ⋅106 cm-2 sec-1

† 

FNC = 5.09 -0.43
+0.44  -0.43

+0.46 ⋅106cm-2 sec-1
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Wrong Neutrinos

• Only ne produced in the
Sun

• Wrong Neutrinos nm,t are
coming from the Sun!

• Somehow some of ne were
converted to nm,t on their
way from the Sun’s core
to the detector
fi neutrino oscillation!
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Dark Side of Neutrino Oscillation

• Traditional parameterization of  neutrino
oscillation in terms of (Dm2, sin22q) covers
only a half of the parameter space

(de Gouvêa, Friedland, HM)

• Convention: n2 heavier than n1
– Vary q from 0˚ to 90˚
– sin22q covers 0˚ to 45˚
– Light side (0 to 45˚) and Dark Side (45˚ to 90˚ )

• To cover 0°£ q £ 90°fi use tan2 q

n1 = ne cosq + nm sinq

n2 = -ne sinq + nm cosq
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March 2002

April 2002
with SNO
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What Next?

• Can we convincingly
verify oscillation with
man-made neutrinos?

• Hard for low Dm2

• To probe LMA, need
L~100km, 1kt

• Need low En, high Fn

• Use neutrinos from
nuclear reactors

Psurv = 1 - sin2 2q sin2 1.27 Dm2c4

eV2
GeV
En

L
km

Ê 

Ë 
Á 

ˆ 

¯ 
˜ 

1kt

KamLAND
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Location, Location, Location
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KamLAND sensitivity on LMA

• First terrestrial expt
relevant to solar
neutrino problem

• KamLAND will
exclude or verify
LMA definitively

• Data taking since
March this year
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KamLAND first neutrino event

† 

n e p Æ e+n

† 

np Æ dg
49.2ms later



Harvard colloquium 45

Expected #events: 86.8±5.6
Background #events: 0.95±0.99
Observed #events: 54

No oscillation hypothesis
Excluded at 99.95%
More details @10:20 am
Tuesday, Italy
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Measurements at KamLAND

• Can see the dip when
Dm2=2–10¥10–5eV2

(Pierce, HM)

• Can measure mass &
mixing parameters

Data/theory



Implications of Neutrino Mass
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Mass Spectrum

What do we do now?
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Raised More Questions

• Why do neutrinos have
mass at all?

• Why so small?
• We have seen mass

differences.  What are the
masses? 

Wn~mn/15eV
• Do we need a fourth

neutrino?
• Are neutrinos and anti-

neutrinos the same?
• How do we extend the

Standard Model to
incorporate massive
neutrinos?
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Two ways to go

(1) Dirac Neutrinos:
– There are new

particles, right-handed
neutrinos, after all

– Why haven’t we seen
them?

– Right-handed neutrino
must be very very
weakly coupled

– Why?
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Extra Dimensions

• All charged particles are on a 3-brane
• Right-handed neutrinos SM gauge singlet

fi Can propagate in the “bulk”
• Makes neutrino mass small

(Arkani-Hamed, Dimopoulos, Dvali, March-Russell;
Dienes, Dudas, Gherghetta; Grossman, Neubert)

• mn ~ 1/R if one extra dim fi R~10mm
• An infinite tower of “sterile” neutrinos
• Or SUSY breaking

(Arkani-Hamed, Hall, HM, Smith, Weiner;
Arkani-Hamed, Kaplan, HM, Nomura)

† 

d 4q S*

M (LHu NÚ )
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Two ways to go

(2) Majorana Neutrinos:
– There are no new light

particles
– What if I pass a

neutrino and look
back?

– Must be right-handed
anti-neutrinos

– No fundamental
distinction between
neutrinos and anti-
neutrinos!
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Seesaw Mechanism

• Why is neutrino mass so small?
• Need right-handed neutrinos to generate

neutrino mass

n L nR( )
mD

mD

Ê 

Ë 
Á 

ˆ 

¯ 
˜ 

n L
n R

Ê 

Ë 
Á 

ˆ 

¯ 
˜ n L nR( )

mD
mD M

Ê 

Ë 
Á 

ˆ 

¯ 
˜ 

n L
n R

Ê 

Ë 
Á 

ˆ 

¯ 
˜ mn =

mD
2

M
<< mD

To obtain m3~(Dm2
atm)1/2, mD~mt, M3~1015GeV (GUT!)

, but nR SM neutral
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Grand Unification

• electromagnetic, weak,
and strong forces have
very different strengths

• But their strengths
become the same at 1016

GeV if supersymmetry
• To obtain

m3~(Dm2
atm)1/2, mD~mt

fi M3~1015GeV!

Neutrino mass may be
probing unification:

Einstein’s dream

M3



Why do we exist?
Matter Anti-matter Asymmetry
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Matter and Anti-Matter
Early Universe

10,000,000,001 10,000,000,000

Matter Anti-matter
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Matter and Anti-Matter
Current Universe

The Great Annihilation

1

us

Matter Anti-matter
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Baryogenesis

• What created this tiny excess matter?
• Necessary conditions for baryogenesis

(Sakharov):
– Baryon number non-conservation
– CP violation

(subtle difference between matter and anti-matter)
– Non-equilibrium

fi G(DB>0) > G(DB<0)
• It looks like neutrinos have no role in this…
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Electroweak Anomaly

• Actually, SM converts
L to B.
– In Early Universe (T >

200GeV), W/Z are
massless and fluctuate
in W/Z plasma

– Energy levels for left-
handed quarks/leptons
fluctuate correspon-
dingly

DL=DQ=DQ=DQ=DB=1 fi D(B–L)=0
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Leptogenesis

• You generate Lepton Asymmetry first.
• Generate L from the direct CP violation in right-

handed neutrino decay

• L gets converted to B via EW anomaly
fi More matter than anti-matter
fi We have survived “The Great Annihilation”

G(N1 Æ niH) - G(N1 Æ n iH) µ Im(h1 jh1khlk
* hlj

*)
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Leptogenesis Works!

• Coherent oscillation of
right-handed sneutrino
(Bose-Einstein condensate)
(HM, Yanagida+Hamaguchi)
– Inflation ends with a large

sneutrino amplitude
– Starts oscillation
– dominates the Universe
– Its decay produces asymmetry
– Consistent with observed

oscillation pattern
– isocurvature fluctuation

testable by MAP? (Moroi, HM)

nB
s

~ e
Tdecay

M1
~ nB

s
Ê 
Ë 
Á 

ˆ 
¯ 
˜ 

obs

Tdecay

106GeV
arg h13

2

h33
2
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Conclusions

• Neutrinos are weird
• Strong evidence for neutrino mass
• Small but finite neutrino mass:

– Need drastic ideas to understand it
• Neutrino mass may be responsible for our

existence
• A lot more to learn in the next few years
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LSND
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n m

n e ?

n e p Æ e+n

m+ Æ e+nen m

p Æ p +

p + Æ m +n m
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3.3s Signal

• Excess positron events
over calculated BG

P(n m Æ n e )
= (0.264 ± 0.067 ± 0.045)%
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Sterile Neutrino

• LSND, atmospheric and
solar neutrino oscillation
signals

Dm2
LSND ~ eV2

Dm2
atm ~ 3¥10–3eV2

Dm2
solar < 10–3eV2

 fi Can’t be accommodated with
3 neutrinos

 fi Need a sterile neutrino
New type of neutrino with no

weak interaction

• 3+1 or 2+2 spectrum?
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Sterile Neutrino getting tight

• 3+1 spectrum: sin22qLSND=4|U4e|2|U4m|2
– |U4m|2 can’t be big because of CDHS, SK U/D
– |U4e|2 can’t be big because of Bugey
– Marginally allowed (90% excl. vs 99% allw’d)

• 2+2 spectrum: past fits preferred
– Atmospheric mostly nm´nt

– Solar mostly ne´ns (or vice versa)

– Now solar sterile getting tight due to SNO
(Barger et al, Giunti et al, Gonzalez-Garcia et al, Strumia)
fi Both scenarios disfavored at 90-99% CL
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SN1987A neutrino burst
doesn’t like LSND

HM, Yanagida
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CPT Violation?
“A desperate remedy…”

• LSND evidence:
anti-neutrinos

• Solar evidence:
neutrinos

• If neutrinos and anti-
neutrinos have different
mass spectra, atmospheric,
solar, LSND accommodated
without a sterile neutrino

(HM, Yanagida)
Best fit to current data

(Strumia)
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CPT Theorem

• Based on three assumptions:
– Locality
– Lorentz invariance
– Hermiticity of Hamiltonian

• Violation of any one of them:
big impact on fundamental physics

• Neutrino mass: tiny effect from high-scale physics
– Non-local Hamiltonian? (HM, Yanagida)
– Brane world? (Barenboim, Borissov, Lykken, Smirnov)
– Dipole Field Theory? (Bergman, Dasgupta, Ganor, Karczmarek, Rajesh)
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Implications on Experiments

• Mini-BooNE experiment
will not see oscillation in
neutrino mode, but will in
anti-neutrino mode

• KamLAND will not see
LMA

• SNO, Borexino establish
LMA by exclusion

fi We’ll see!
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Maybe even more surprises
in neutrinos!


