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Chapter 1

A brief reminder of linear
Algebra

The fundamental principle of quantum mechanics is that an isolated
physical system can be put into correspondence with a linear vector
space in such a way that a definite state of the system corresponds to
a vector and physical observables correspond to linear operators. For
this reason the mathematics of linear vector space plays an important
role in the quantum theory.

1.1 Linear vector space

A linear vector space is a set of objects (vectors) |a >, |b >, |c > ...
which is closed under two operations:

1. Addition, which is commutative and associative:

|a > +|b >= |b > +|a >
(|a > +|b >) + |c >= |a > +(|b > +|c >). (1.1)

2. Multiplication by a scalar (any complex number), which is dis-
tributive and associative, that is,

λ(|a > +|b >) = λ|a > +λ|b >
λ(µ|a >) = (λµ)|a >
(λ+ µ)|a >= λ|a > +µ|a > . (1.2)
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In addition, we assume a null vector —0¿ exists such that for all |a >

|a > +|0 >= |a >, (1.3)

and that for every |a >, a vector −|a > exists such that

|a > +(−|a >) = |0 > . (1.4)

In the rest of the course we abbreviate |0 > by 0. Finally the multipli-
cation by the scalar 1 leaves every vector unchanged:

1|a >= |a > . (1.5)

A set of vectors |a1 >, |a2 >, ..., |an > is said to be linearly indepen-
dent provided

λ1|a1 > +λ2|a2 > +...+ λn|an >= 0, (1.6)

implies λ1 = λ2 = ... = λn = 0.
If in a particular vector space there exists n linearly independent

vectors but no set of n+ 1 linearly independent ones, the space is said
to be n-dimensional.

Let |a1 >, ..., |an > be a set of n linearly independent vector in an
n-dimensional vector space. Then if |x > is an arbitrary vector in the
space there exists an unique set of numbers {xi} such that

|x >=
n∑
i=1

xi|ai > . (1.7)

The fact that an arbitrary vector |x > can be written as a linear combi-
nation of the |ai > is often expressed as this: the set of “base vectors”
{|ai >} is complete. Under a particular choice of base vectors there is
an 1-1 correspondence between a vector |x > and its components:

|x >↔


x1

.

.

.
xn

 . (1.8)
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1.2 Linear operators and their corre-

sponding matrices

A linear operator is a linear function of a vector, that is, a mapping
which associates with every vector |x > a vector A(|x >), in a linear
way,

A(λ|a > +µ|b >) = λA(|a >) + µA(|b >). (1.9)

Due to Eq. (1.9) it is sufficient to know A(|ai >) for the n base vectors
|ai >. Since A(|ai >) is also a vector in the vector space, it can be
expressed as the linear combination of |aj >

A(|ai >) =
n∑
j=1

Aji|aj > . (1.10)

Using Eq. (1.7) and Eq. (1.9) we can then evaluate

A(|x >) = A(
∑
i

xi|ai >) =
∑
i

xiA(|ai >) =
∑
i

∑
j

xiAji|aj > .

(1.11)
Consequently the component yi of the vector A(|x >) can be obtained
as follows

A(|x >)↔


y1

.

.

.
yn

 =


A11 . . . A1n

. . . . .

. . . . .

. . . . .
An1 . . . Ann




x1

.

.

.
xn

 . (1.12)

In the above matrix product is assumed. Thus the entire information
of the vector function A is encoded in the following matrix

A↔


A11 . . . A1n

. . . . .

. . . . .

. . . . .
An1 . . . Ann

 . (1.13)

The sum and product of linear operators and the product of an
operator and a scalar is defined by the following relation

(A + B)(|x >) ≡ A(|x >) + B(|x >)
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(AB)(|x >) ≡ A(B(|x >))

(λA)(|x >) ≡ λA(|x >). (1.14)

The matrices corresponding to the operators on the left hand side of
Eq. (1.14) are

(A + B)↔ A+B

(AB)↔ AB

(λA)↔ λA, (1.15)

where A+B, AB and λA denote matrix addition, matrix multiplication
and the multiplication of a matrix be a scalar respectively.

In general matrix multiplication is not commutative, i.e. AB needs
not equal BA. When AB = BA we say that A and B commute. The
commutator of two matrices is defined as

[A,B] ≡ AB −BA. (1.16)

The elements of a null matrix are all zero, and the elements of the
identity matrix are

Iij = δij. (1.17)

The inverse of a matrix does not always exist. However if it exists the
following condition is satisfied

AA−1 = A−1A = I. (1.18)

In order for a matrix A to have the inverse its determinant must be
non-zero, in which case

A−1
ij =

cofactor ofAji
detA

. (1.19)

In the above the cofactor of the element Aji equals (−1)i+j times the
determinant of the matrix which A becomes if its jth row and the ith
column are deleted.

A number of matrices closely related to a given matrix A are given
in the following table.
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matrix elements
A Aij
transpose Ã Ãij = Aji
complex conjugate A∗ A∗ij = (Aij)

∗

hermitian conjugate A+ A+
ij = (Aji)

∗

1.3 Function of an operator

A function of an operator (matrix) is defined by the power series ex-
pansion. For example:

eA =
∞∑
n=0

1

n!
An. (1.20)

1.4 Unitary space and the scalar product

A unitary space is one in which for any two vectors |u > and |v >
the scalar product < u|v > is defined as a complex number with the
following properties

< u|v >=< v|u >∗

< u|λv + ηw >= λ < u|v > +η < u|w >

< u|u >≥ 0 and < u|u >= 0 if and only if |u >= 0. (1.21)

The scalar product defined above obeys the following Schwartz’ inequal-
ity

< u|u >< v|v > ≥ | < u|v > |2. (1.22)

Two vectors whose scalar product is zero are said to be orthogonal.

1.5 Complete orthonormal set

let |e1 >, ..., |en > be n-linearly independent vectors in a unitary space.
They are said to form a orthonormal set if and only if

< ei|ej >= δij. (1.23)
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Any set of linearly independent vectors |a1 >, ..., |an > can be made
orthonormal by the following Gram-Schmidt process. First we choose,
say, |a1 > and normalize it

|e1 >≡
|a1 >√
< a1|a1 >

. (1.24)

Next we orthogonalize |a2 > with respect to |e1 >

|a′2 >≡ |a2 > − < e1|a2 > |e1 > . (1.25)

Then we normalize |a′2 >

|e2 >≡
|a′2 >√
< a′2|a′2 >

. (1.26)

Next we orthogonalize |a3 > to |e1 > and |e2 >

|a′3 >≡ |a3 > − < e1|a3 > |e1 > − < e2|a3 > |e2 > . (1.27)

Afterwards we normalize |a′3 >

|e3 >≡
|a′3 >√
< a′3|a′3 >

. (1.28)

We repeat this process until exhaust all vectors in the set.
A set of n orthonormal vectors in a n-dimensional vector space is

called a complete orthonormal set. Any vector in this vector space can
be written as a linear combination of these base vectors

|x >=
n∑
i=1

φi|ei > . (1.29)

The statement that {|ek >} form a complete orthonormal set is often
stated as the following equation∑

k

|ek >< ek| = I, (1.30)
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because
|x >= I|x >=

∑
k

|ek >< ek|x > . (1.31)

The scalar product of two vectors can be expressed in terms of their
components with respect to an orthonormal basis

< y|x >=
n∑
i=1

y∗i xi. (1.32)

The matrix corresponds to a linear operator under an orthonormal
basis is of particular importance in quantum mechanics. A compact
way to write down such a matrix is

A =
∑
ij

Aij|ei >< ej|. (1.33)

The hermitian conjugate of A is the operator given by

A+ =
∑
ij

A∗ji|ei >< ej|. (1.34)

From Eq. (1.33) and Eq. (1.34) it follows that

< u|A+|v >= (< v|A|u >)∗. (1.35)

1.6 Unitary transformation

A linear operator satisfying

U+ = U−1, (1.36)

is said to be unitary. If {|ei >} is an orthonormal basis, then

|e′k >=
∑
i

Uik|ei > (1.37)

where U is a unitary matrix also form an orthonormal basis.
Substituting |ei >=

∑
j U

+
ji |e′j > into Eq. (1.33) we obtain

A =
∑
ij

A′ij|e′i >< e′j|, (1.38)

where
A′ij =

∑
k,l

U+
ikAklUlj. (1.39)
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1.7 Eigenvalue and eigenvector

Let A be a linear operator and |v > be a vector. If

A|v >= λ|v >, (1.40)

then we said that |v > is an eigenvector of A and λ is the associated
eigenvalue. Under an orthonormal basis Eq. (1.40) read∑

j

Aijvj = λvi, ∀i. (1.41)

Since Eq. (1.41) can be rewritten as the following n simultaneous equa-
tion ∑

j

(Aij − λδij)vj = 0, (1.42)

the condition for the existence of non-trivial solution


v1

.

.
vn

 is

det (Aij − λδij) = 0. (1.43)

Eq. (1.43) is called the secular equation of Eq. (1.40).
There are three theorems concerning the eigenvalues of a hermitian

operator.

1. The eigenvalues of a hermitian operator are all real numbers.

2. The eigenvectors of a hermitian operator that correspond to dif-
ferent eigenvalues are orthogonal.

3. It is possible to choose the eigenvectors of a hermitian operator
so that they form a complete orthonormal set.

1.8 Diagonalization of matrices via uni-

tary transformations

Let H be the matrix corresponds to a hermitian operator. Let e1, ..., en
be its complete orthonormal eigen (column) vectors. Then under the
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unitary transformation where

U ≡
(
e1 . . . en
↓ . . . ↓

)
(1.44)

H becomes a diagonal matrix

U+HU = D =


λ1 0 0 ...
0 λ2 0 ...
0 0 λ3 ...
. . . ...

 . (1.45)

Two matrices A and B can be simultaneously diagonalized if and
only if A commute with B.

The eigenvalues of a matrix is unaffected by a unitary transforma-
tion, i.e., H and S+HS have the same eigenvalues. In addition to the
eigenvalues the trace of a matrix (TrA) and the determinant (detA)of
a matrix are also invariant under unitary transformations.

Finally we state the general condition that a matrix be diagonaliz-
able by means of unitary transformation. Consider an arbitrary matrix
M . We can write

M = A+ iB, (1.46)

where A and B are both hermitian, by choosing

A =
M +M+

2

B =
M −M+

2i
. (1.47)

Now A and B can be diagonalized separately, but in order that M may
be diagonalized, we must be able to diagonalize A and B simultane-
ously. The requirement is that A and B commute.

1.9 Spaces of infinite dimensionality

Two kinds of infinite dimensional vector spaces are encountered in
quantum mechanics. One has denumerably infinite number of base
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vectors. For example a complete orthonormal set in this space may
read

|ek > ; k = 1, ...,∞. (1.48)

In this case aside from the fact that vectors/matrices carry infinite
components/elements everything else is the same

The other is nondenumerably infinite. For example consider a par-
ticle in one dimension. The eigenstate of the position operator of a
particle:

X|x >= x|x > . (1.49)

Two such states obeys the following orthonormal relationship

< y|x >= δ(x− y), (1.50)

with δ(x− y) the generalization of δij.
{|x >} form a complete orthonormal set in the sense that any state

|ψ > of that particle can by expressed as linear combination of {|x >}:

|ψ >=
∫
dxψ(x)|x > . (1.51)

We note that
∑
i is now replace by

∫
dx. The scalar ψ(x) is often called

the wavefunction. The above completeness can be stated as∫
dx|x >< x| = I. (1.52)

Physical observable are linear operators. The matrices corresponding
to these operators carries continuous labels. For example the matrix
corresponds to the momentum operator

P (x, y) = − h̄
i
δ′(x− y). (1.53)

In component form the equation

|χ >= P |ψ > (1.54)

becomes

χ(x) =
∫
dy[− h̄

i
δ′(x− y)]ψ(y) =

h̄

i

dψ(x)

dx
. (1.55)
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Chapter 2

The fundamental
assumptions

2.1 The dogma

1. An isolated physical system can by put into 1-1 correspondence
with a vector space (Hilbert space), so that a definite state of the
system corresponds to a definite unit norm vector in the space.

2. Each physical observable of a system is associated with a hermi-
tian operator acting on the Hilbert space. The eigenstates of each
such operator form a complete orthonormal set.

3. If the system is in state |ψ >, then the result of a given measure-
ment of a physical observable O is an eigenvalue λn of the associ-
ated hermitian operator with the probability p = | < φn|ψ > |2.
In the above |φn > denotes the eigenstate of O corresponds to
eigenvalue λn. The averaged value of a observable after large
number of measurements is

Ō =< ψ|O|ψ > . (2.1)

4. A measurement of observable A resulting in value λi projects the
state vector from initial value |u > to final state |φi >. The
latter is the eigenstate associated with λi. If |u > is already an
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eigenstate of A, then it is not changed by the measurement. If
|u > is not an eigenstate of A it is projected into |φn > with the
following probability

p = | < φn|u > |2. (2.2)

The assumption of quantum mechanics has some far reaching im-
plications. The following are two examples.

2.2 The uncertainty relation

Item (3) of the above list implies the following uncertainty relation.
Consider two physical observables whose corresponding (hermitian) op-
erators are A and B. If [A,B] = ic1 where c is a real number, then
∆A∆B ≥ c

2
. Thus

[A,B] = ic implies ∆A∆B ≥ c

2
. (2.3)

In the above

∆A2 ≡< u|A2|u > − < u|A|u >2=< u|(A− < u|A|u >)2|u >, (2.4)

where |u > is the state of the system. Physically ∆A is the root-
mean-square deviation of the outcome of a large number of identical
measurements made on observable A. Thus Eq. (2.3) implies that in a
series of experiments where A and B are simultaneously measured, the
root-mean-square deviation of A and B obeys the inequality ∆A∆B ≥
c
2
.

Proof: Let

O1 ≡ A− < u|A|u >
O2 ≡ B− < u|B|u > . (2.5)

1If the commutator of two hermitian operators is a c-number (scalar) then
this number is necessarily pure imaginary. Proof: if [A,B] = z, then [A,B]+ =
−[A,B] = z∗. Thus z∗ = −z which implies that z is pure imaginary.
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Since A and B are hermitian so are O1 and O2. In addition it is obvious
that

[O1, O2] = ic (2.6)

. Let |v >= O1|u >, |w >= O2|u >. (Consequently < v|v >=
∆A2,∆B2 =< w|w >.) By Schartz’ inequality

∆A2∆B2 =< v|v >< w|w >≥ | < v|w > |2 = | < u|O1O2|u > |2

=
1

4
| < u|[O1, O2] + {O1, O2}|u > |2. (2.7)

In the above
{O1, O2} ≡ O1O2 +O2O1, (2.8)

is the anti-commutator of O1 and O2. Since both O1 and O2 are her-
mitian, so is {O1, O2}. As a result

< u|{O1, O2}|u >= α = a real number. (2.9)

Substitute Eq. (2.6) and Eq. (2.9) into Eq. (2.7) we obtain

∆A2∆B2 ≥ 1

4
|α + ic|2 =

1

4
(α2 + c2) ≥ 1

4
c2. (2.10)

As the result Eq. (2.3) holds.
A commonly cited example of Eq. (2.3) is the position-momentum

uncertainty relation

∆x∆y ≥ h̄

2
. (2.11)

2.3 A reminder of the spin 1/2 algebra

In the second example we discuss the implication of item (4) of the
dogma - i.e. a measurement “collapses” the system into an eigenstate
of the observable that is been measured.

Let us consider two spin 1/2 particles. As the reader probably
remember for a spin 1/2 particle the projection of its spin angular
momentum along any direction is of either +h̄/2 or −h̄/2. We shall
revisit the spin angular momentum later, at this time let me just remind
the readers of some facts of the spin 1/2 problem.
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The state space of a single spin 1/2 is two dimensional because there
are two othonormal state |+ ẑ > and | − ẑ > correspond to ±h̄/2 spin
angular momentum along the z-axis respectively. The matrices that
correspond to the spin operator in x,y,z directions are

Sx ↔
h̄

2

(
0 1
1 0

)
Sy ↔

h̄

2

(
0 −i
i 0

)
Sz ↔

h̄

2

(
1 0
0 −1

)
. (2.12)

The state that corresponds to ±h̄/2 spin angular momentum along the
z-axis are

|+ ẑ >↔
(

1
0

)
| − ẑ >↔

(
0
1

)
. (2.13)

The state above satisfies the following eigen equations

Sz|+ ẑ >=
h̄

2
|+ ẑ >

Sz| − ẑ >= − h̄
2
| − ẑ > . (2.14)

Similarly we can show that the state that satisfies

Sx|+ x̂ >=
h̄

2
|+ x̂ >

Sx| − x̂ >= − h̄
2
| − x̂ > (2.15)

are given by

|+ x̂ >↔ 1√
2

(
1
1

)
=

1√
2

(|+ ẑ > +| − ẑ >)

| − x̂ >↔ 1√
2

(
1
−1

)
=

1√
2

(|+ ẑ > −| − ẑ >). (2.16)
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Similarly it can be shown that the state that satisfy

â · S|+ â >=
h̄

2
|+ â >

â · S| − â >=
h̄

2
| − â >, (2.17)

where â = (sin 2φa, 0, cos 2φa) is

|+ â > = (cosφa|+ > + sinφa|− >)

| − â > = (− sinφa|+ > + cosφa|− >) . (2.18)

In the above 2φa is the angle made by â and the z-axis.

For two particles the state space is 4-dimensional since there are
four possible orthonormal states | + ẑ,+ẑ >, | + ẑ,−ẑ >, | − ẑ,+ẑ >
, | − ẑ,−ẑ >. Out of the four possible states above we can construct a
very special state

|S >=
1√
2

(|+ ẑ,−ẑ > −| − ẑ,+ẑ > . (2.19)

This state has the property that the total spin angular momentum is
zero. In other words

(S1z + S2z)|S >= (S1x + S2x)|S >= (S1y + S2y)|S >= 0. (2.20)

Imagine that the two particles are initially close together and are in
the singlet state Now imagine the particles fly apart in a way that their
total spin angular momentum is conserved. Let there be two observers
A and B who intercept these particles.

If B measures the spin of the particle (say 2) he/she intercepts while
observer A does nothing. The outcome of B’s experiment is that there
is equal probability for spin up (+ẑ) and spin down (−ẑ).

Now consider A first measures the spin of particle 1 then B measures
the spin of particle 2. In this case if A sees spin up then there is a 100%
probability that B will see spin down. Likewise if A sees spin down B
for sure will see spin up. (Of course there is equal chances for the above
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two scenario to occur.)2

Thus one might say that what A does affect the outcome of B’s
measurement. One might say that this is nothing unusual. Imagine
two billiard balls colliding with equal and opposite velocities. After the
collision the direction of ball 2’s velocity is totally random. However
if one measures the velocity of ball 1, then due to the conservation of
momentum ball 2’s velocity will for sure be opposite to that.

Of course in the billiard ball’s case the fact that the final velocity
of ball 1 appears random is because our imperfect knowledge about
the initial condition such as impact parameter ... etc. In principle
if we have such information, the final velocities should be completely
predictable. The situation is entirely different in the spin 1/2 case. This
time the probabilistic outcome of a measurement on particle 1’s spin
is not due to imperfect information. According to quantum mechanics
this probabilistic feature exists at the most fundamental level of nature.

2According to the assumption of quantum mechanics the probability that B
observes spin up/down while A does not make any measurement is given by

Pu = | < +ẑ,+ẑ|S > |2 + | < +ẑ,−ẑ|S > |2 =
1
2

Pd = | < −ẑ,+ẑ|S > |2 + | < −ẑ,−ẑ|S > |2 =
1
2
.

(2.21)

However once A has measured that particle 1 has spin, say, −ẑ, then the singlet
state is “collapsed” to

|S >→ −| − ẑ,+ẑ >, (2.22)

Thus the probability that a subsequent measurement of B will yield spin up/down
is given by

Pu = |− < +ẑ,−ẑ| − ẑ,+ẑ > |2 = 1
Pd = |− < −ẑ,−ẑ| − ẑ,+ẑ > |2 = 0. (2.23)

Similarly if A has measured +ẑ for particle 1’s spin, the probability for the outcome
of B’s measurement are

Pu = | < +ẑ,+ẑ|+ ẑ,−ẑ > |2 = 0
Pd = | < −ẑ,+ẑ|+ ẑ,−ẑ > |2 = 1. (2.24)
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The billiard ball example is a special case of the “hidden variable
theory”.

2.4 The hidden variable theory

In this theory it is argued that the fact that the behavior at the mi-
croscopic level appears probabilistic is only because some yet unknown
variables have not been specified. For example when a hidden variable
h falls in the range of R++ the spins of particle 1 and 2 are +1/2,+1/2,
... etc. If particle 1’s spin is not measured the range of h that is con-
sistent with particle 2 having spin up/down is R++

⋃
R−+/R+−

⋃
R−−.

Thus if R++
⋃
R−+ and R+−

⋃
R−− occupy the same “volume” in the

h-space, there is equal probability for particle 2 to have spin up and
down. If particle 1’s spin is measured to be +/− that fixes the range of
h to R++

⋃
R+−/R−+

⋃
R−−. Now if R++/R−− has zero volume, then

the subsequent measurement of particle 2’s spin must yield the value
−/+. The above is summarized in the following table

Range probability Particle 1 Particle 2
R+− p1 = 1/2 +ẑ −ẑ
R−+ p2 = 1/2 −ẑ +ẑ

The way that hidden variable theory works is to design the h-space
until the quantum mechanical prediction is met. For sometime it is
felt that it is always possible to design the h-space so that it will be
consistent with quantum mechanics.

For example, let us consider observer A and B measure the z as
well as the x components of the spin. According to the assumption of
quantum mechanics there are the following possibilities:

1. If A measures Sz and B measures Sx, there is a completely random
correlation between the two measurements.

2. If A measures Sx and B measures Sx, there is a 100% correlation
between the two measurements.

3. If A makes no measurement, B’s measurement show random re-
sults.
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The proof that quantum mechanics yield the above prediction is left as
a homework problem.

The way that hidden variable theory cope with the above result is
to designs the space of the hidden variables as follows:

Range Probability Particle 1 Particle 2

R
(+ẑ,−x̂)
(−ẑ,+x̂) 1/4 (+ẑ,−x̂) (−ẑ,+x̂)

R
(+ẑ,+x̂)
(−ẑ,−x̂) 1/4 (+ẑ,+x̂) (−ẑ,−x̂)

R
(−ẑ,+x̂)
(+ẑ,−x̂) 1/4 (−ẑ,+x̂) (+ẑ,−x̂)

R
(−ẑ,−x̂)
(+ẑ,+x̂) 1/4 (−ẑ,−x̂) (+ẑ,+x̂)

In the above by (+ẑ,−x̂) we mean a state where if one measures Sz one
will get +h̄/2 with certainty, while if one measures Sx instead one will
get−h̄/2 with certainty. It should be emphasized that we are not saying
that one can simultaneously measure Sz and Sx to be +h̄/2 and −h̄/2.
When we measure Sz we do not measure Sx and vice versa. We are
assigning definite values of spin components in more than one direction
with the understanding that only one or the other of the components
can actually be measured.

2.5 Bell’s inequality

For a long time it is believed that the hidden variable theory can always
be concocted in such a way that they would give no predictions other
than the usual quantum mechanical one. It is until in 1964 J.S. Bell
(see, e.g., J.S. Bell Rev. Mod. Phys. 38, 447 (1966)) pointed out that
the hidden variable theory has an experimentally-testable prediction
that disagrees with the prediction of quantum mechanics.

Let us consider three directions â, b̂, ĉ in the z− x plane which are,
in general, not mutually orthogonal. Since the singlet state has total
spin angular momentum zero, the projection of particle 1 and particle
2’s spin along â, b̂ or ĉ must sum to zero.

In order to be consistent with the above the hidden variable theory
designs a table like the following.
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Range Probability Particle 1 Particle 2

R
(+â,+b̂,+ĉ)

(−â,−b̂,−ĉ) p1 (+â,+b̂,+ĉ) (−â,−b̂,−ĉ)

R
(+â,+b̂,−ĉ)
(−â,−b̂,+ĉ) p2 (+â,+b̂,−ĉ) (−â,−b̂,+ĉ)

R
(+â,−b̂,+ĉ)
(−â,+b̂,−ĉ) p3 (+â,−b̂,+ĉ) (−â,+b̂,−ĉ)

R
(+â,−b̂,−ĉ)
(−â,+b̂,+ĉ) p4 (+â,−b̂,−ĉ) (−â,+b̂,+ĉ)

R
(−â,+b̂,+ĉ)
(+â,−b̂,−ĉ) p5 (−â,+b̂,+ĉ) (+â,−b̂,−ĉ)

R
(−â,+b̂,−ĉ)
(+â,−b̂,+ĉ) p6 (−â,+b̂,−ĉ) (+â,−b̂,+ĉ)

R
(−â,−b̂,+ĉ)
(+â,+b̂,−ĉ) p7 (−â,−b̂,+ĉ) (+â,+b̂,−ĉ)

R
(−â,−b̂,−ĉ)
(+â,+b̂,+ĉ)

p8 (−â,−b̂,−ĉ) (+â,+b̂,+ĉ)

According to this table

P+â

+b̂
= p3 + p4

P+â
+ĉ = p2 + p4

P+ĉ

+b̂
= p3 + p7. (2.25)

Since pi ≥ 0, we conclude

P+â

+b̂
≤ P+â

+ĉ + P+ĉ

+b̂
. (2.26)

This is called the Bell inequality.
Now let us ask what is the quantum mechanical prediction. Accord-

ing to Eq. (2.18) the spin state that satisfy

â · S|+ â >= +
h̄

2
|+ â >, (2.27)

is
|+ â >= (cosφa|+ > + sinφa|− >) . (2.28)

In the above 2φa is the angle made by â and the z-axis.
Using Eq. (2.28) we obtain

< S|+ â,+b̂ >

=
1√
2

[< −+ | − < +− |] [cosφa cosφb|+ + >
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+ cosφa sinφb|+− > + sinφa cosφb| −+ >

+ sinφa sinφb| − − >]

=
1√
2

[cosφa sinφb − sinφa cosφb]

=
1√
2

sin (φb − φa). (2.29)

As the result

P+â

+b̂
= | < S|+ â,+b̂ > |2 =

1

2
sin2 (φb − φa). (2.30)

Similarly we have

P+ĉ

+b̂
=

1

2
sin2 (φb − φc)

P+â
+ĉ =

1

2
sin2 (φc − φa) (2.31)

Thus according to quantum mechanics we have

P+â

+b̂
=

1

2
sin2 (φb − φa)

P+â
+ĉ + P+ĉ

+b̂
=

1

2
sin2 (φc − φa) +

1

2
sin2 (φb − φc). (2.32)

Thus in order for the Bell inequality to be satisfied we require

sin2 (φb − φa) ≤ sin2 (φc − φa) + sin2 (φb − φc). (2.33)

There are clearly choice of φ’s so that the above equation is violated.
Example are such as φa = 0, φc = θ, φb = 2θ. The Bell inequality
requires

sin2 2θ = (1− 2 sin2 θ)2 ≤ 2 sin2 θ. (2.34)

Thus if we choose θ so that

sin2 θ >
3−
√

5

4
, (2.35)

(or θ ≥ 25.9 degrees) the Bell inequality is violated. The first experi-
mental demonstration of the violation of Bell’s inequality is achieved at
Berkeley by Freedman et al (Phys. Rev. Lett. 28, 938 (1972).) using
the photon analog of the spin 1/2 problem.
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Chapter 3

Quantum dynamics

So far we have not discussed how physical systems change with time.
This section is devoted to the dynamic evolution of states and observ-
ables.

The first important point we should keep in mind is that time is
just a parameter in quantum mechanics, not an operator. In particular
time is not an observable in the language of the previous sections. It is
incorrect to talk about the time operator in the same sense as we talk
about the position operator.

3.1 The Hamiltonian and time evolution

operator

The basic question is, how does a state change with time. To answer
this question it is sufficient to describe how does a physical state change
after infinitesimal time increment from t to t + dt. The answer is that
suppose the system is in state |φ > at time t, then after dt the system
is in the state

|χ >= [I − idt
h̄
H(t)]|φ > . (3.1)

In the above H(t) is a hermitian operator that in general depends on
t. This operator is commonly referred to as the Hamiltonian (energy
operator) of the system.
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Because H(t) is hermitian Eq. (3.1) implies that

< χ|χ >=< φ|φ > +O(dt2). (3.2)

Thus the time evolution dictated by Eq. (3.1) conserves the norm of
the state vector. Eq. (3.1) can be integrated to yield the evolution of a
state after finite time ∆t elapse. The answer is that

|η >= [I−i ε
h̄
H(t+(N−1)ε)]...[I−i ε

h̄
H(t+ε)][I−i ε

h̄
H(t)]|φ > . (3.3)

In the above we have divided the total time evolution into N infinites-
imal pieces, i.e.

ε =
∆t

N
. (3.4)

Eq. (3.3) is equivalent to

|η >= T>{e−
i
h̄

∫ t+∆t

t
dtH(t)}|φ >, (3.5)

where T> is the time ordering operator. To be more specific,

T>[H(t1)H(t2)...H(tN)] = H(tlatest)...H(tearliest). (3.6)

But what happen if ∆t is negative. In that case the time evolution
from |η > to |φ > is given by Eq. (3.5) or

|φ >= T>{e−
i
h̄

∫ t
t+∆t

dtH(t)}|η >, (3.7)

As the result

|η > = {T>e−
i
h̄

∫ t
t+∆t

dtH(t)}−1|φ >= T<e
i
h̄

∫ t
t+∆t

dtH(t)|φ >

= T<e
− i
h̄

∫ t+∆t

t
dtH(t)|φ > . (3.8)

In the above T< is the anti time ordering operator i.e.

T<[H(t1)H(t2)...H(tN)] = H(tearliest)...H(tlatest). (3.9)

The operator that evolves a state from time t1 to t2 is called the
time evolution operator

U(t2; t1) ≡ Tt2−t1{e
− i
h̄

∫ t2
t1
dtH(t)}, (3.10)
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where

Tt2−t1 = T>, t2 > t1

= T<, t2 < t1. (3.11)

Two immediate implications of Eq. (3.10) are that

U(t1; t2) = U+(t2; t1), (3.12)

and
U(t+ δt; t0) = e−

i
h̄
δtH(t)U(t; t0). (3.13)

The consequence of Eq. (3.12) is that if

|ψ2 >= U(t2; t1)|ψ1 >, (3.14)

then
|ψ1 >= U(t2 : t1)+|ψ2 >= U(t1; t2)|ψ2 > . (3.15)

Thus the hermitian conjugate of the time evolution operator does the
backward time evolution. The consequence of Eq. (3.13) is that

ih̄
dU(t; t0)

dt
= H(t)U(t; t0)

−ih̄dU
+(t; t0)

dt
= U+(t; t0)H(t) (3.16)

3.2 The Schrödinger equation

A state that evolves by the time evolution operator |ψ(t) >=
U(t; t0)|ψ0 > obeys the following differential equation - the Schrödinger
equation

ih̄
∂

∂t
|ψ(t) >= H(t)|ψ(t) > . (3.17)

In the case where the Hamiltonian is time independent Eq. (3.10)
becomes

U(t2; t1) = e−
i
h̄

(t2−t1)H . (3.18)

If at t = 0 a system is in the eigenstate of a time-independent Hamil-
tonian H|n >= En|n > then the state at time t is

|ψ(t) >= e−
i
h̄
tH |n >= e−

i
h̄
Ent|n > . (3.19)
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3.3 The Heisenberg equation

Let {|en >} be an orthonormal basis, and A be a linear operator corre-
sponds to a physical observable. The matrix corresponds to A is given
by

Anm =< en|A|em > . (3.20)

Upon time evolution each of the basis state becomes

U(t; 0)|en > . (3.21)

The matrix element of A then evolves to

< en|U(t; 0)+AU(t; 0)|em > . (3.22)

As far as the matrix elements is concerned we can regard the state
as static while the operator is evolving:

AH(t) = U(t; 0)+AU(t; 0). (3.23)

This point of view is called the “Heisenberg picture”. In the following
we contrast the Heisenberg picture with the Schrödinger one.

States Operators
Schrödinger time dependent time independent
Heisenberg time independent time dependent

According to the Heisenberg picture the physical observables evolves
according to the following differential equation

dAH
dt

=
i

h̄
[HH , AH ] +

(
∂A

∂t

)
H

. (3.24)

Due to the fact that U(t; 0)+U(t; 0) = I,

[HH , AH ] = U(t; 0)+[H(t), A]U(t; 0) (3.25)

. The last term of the above equation arises from the explicit time
dependence of the operator itself.
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3.4 Two-state problem

The two-state problem has the simplest state-space – there are only two
linearly independent vectors. Let us call them |u > and |d >.1 They
form a orthonormal set, i.e.,

|u >< u|+ |d >< d| = I. (3.26)

Any hermitian matrix in this space can be written as

M =
(

a b− ic
b+ ic d

)
, (3.27)

where a, b, c, d are real. A matrix of the form Eq. (3.27) can be expressed
as a linear combination of the identity and three Pauli matrices:

M =

(
a+ d

2

)
I + bσx + cσy +

(
a− d

2

)
σz. (3.28)

In the above

σx =
(

0 1
1 0

)
σy =

(
0 −i
i 0

)
σz =

(
1 0
0 −1

)
, (3.29)

are the three Pauli matrices. Some important properties of the Pauli
matrices are

σ2
x = σ2

y = σ2
z = I, (3.30)

and

σxσy = iσz

σyσz = iσx

σzσx = iσy. (3.31)

Eq. (3.31) implies the following commutation relation

[σα, σβ] = 2i
∑
γ

εαβγσγ, (3.32)

1A physical realization of the two-state problem is the spin state of a spin 1/2
particle.
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and anticommutation relation

{σα, σβ} = 0. (3.33)

In Eq. (3.32) εxyz = εyzx = εzxy = −εyxz = −εzyx = −εxzy = 1, and all
other combination of α, β, γ give zero.

A simple example of Hamiltonian in this two-state space is

H = −Bσx. (3.34)

The eigenstates of this Hamiltonian is

1√
2

(
1
1

)
eigenenergy = −B

1√
2

(
1
−1

)
eigenenergy = B. (3.35)

The unitary matrix which transforms H into diagonal form is

U =

( 1√
2

1√
2

1√
2
− 1√

2

)
, (3.36)

and

U+HU =
(−B 0

0 B

)
. (3.37)

If the system starts in the up state (
(

1
0

)
) after time t it becomes

e−
i
h̄
tH
(

1
0

)
= e

i
h̄
tBσx

(
1
0

)
= [cos

(
Bt

h̄

)
+ i sin

(
Bt

h̄

)
σx]

(
1
0

)
= cos

(
Bt

h̄

)(
1
0

)
+ i sin

(
Bt

h̄

)(
0
1

)
. (3.38)

Thus the system oscillates between the spin up and spin down states
with frequency

Ω =
B

h̄
. (3.39)
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In Heisenberg picture the time-dependent operator evolves from
σx, σy and σz are

e
i
h̄
tHσxe

− i
h̄
tH = σx

e
i
h̄
tHσye

− i
h̄
tH

=

 cos
(
Bt
h̄

)
−i sin

(
Bt
h̄

)
−i sin

(
Bt
h̄

)
cos

(
Bt
h̄

) ( 0 −i
i 0

) cos
(
Bt
h̄

)
i sin

(
Bt
h̄

)
i sin

(
Bt
h̄

)
cos

(
Bt
h̄

) 
=

 sin
(

2Bt
h̄

)
−i cos

(
2Bt
h̄

)
i cos

(
2Bt
h̄

)
− sin

(
2Bt
h̄

)  = sin
(

2Bt

h̄

)
σz + cos

(
2Bt

h̄

)
σy

e
i
h̄
tHσze

− i
h̄
tH

=

 cos
(
Bt
h̄

)
−i sin

(
Bt
h̄

)
−i sin

(
Bt
h̄

)
cos

(
Bt
h̄

) ( 1 0
0 −1

) cos
(
Bt
h̄

)
i sin

(
Bt
h̄

)
i sin

(
Bt
h̄

)
cos

(
Bt
h̄

) 
=

 cos
(

2Bt
h̄

)
i sin

(
2Bt
h̄

)
−i sin

(
2Bt
h̄

)
− cos

(
2Bt
h̄

) = cos
(

2Bt

h̄

)
σz − sin

(
2Bt

h̄

)
σy.(3.40)

Thus

~̇σH =
2B

h̄
x̂× ~σH . (3.41)

Eq. (3.41) is very important in studying the precession of the electron
spin in magnetic field. The matrix corresponds to the spin of an electron
is given by

S =
h̄

2
~σ. (3.42)

The Hamiltonian that governs such a spin in external magnetic field is

H = − e

mec
B · S. (3.43)

Here e
mec

S is the magnetic moment of an electron. Putting
Eq. (3.42),Eq. (3.41),Eq. (3.43) and Eq. (3.34) together we conclude
that

ṠH = ΩB̂ × SH , (3.44)

where

h̄Ω =
eB

mec
. (3.45)

Eq. (3.44) implies that the electron spin precesses at the frequency Ω.

31



3.5 The Berry’s phase in two-state sys-

tems

Let us consider the following Hamiltonian parametrized by R = (X, Y )

H(R) = Xσz + Y σx = R · ~σ. (3.46)

The eigenvalues of H(R) are ±
√
X2 + Y 2 = ±|R|. Thus at R = 0 H

is degenerate.
M. Berry ( Proc. R. Soc. Lond. A 392, 45 (1984)) discovered a

deep theorem concerning the eigenstates of this type of Hamiltonian.
Let us imagine R in Eq. (3.46) changes with time. We say that the
change in R is “adiabatic” if Ṙ(t) is very small. Of course a slowly
varying R induces a slowly varying H(R(t)). Let |ψ±(R(t)) > be the
instantaneous eigenstate of H(R(t)) with eigen energy E±(R(t)) =
±|R(t)|. It can be shown that if we start off in the state |ψ±(R(0)) >
and change R(t) adiabatically, then the state at time t is given by

|ψ±(t) >= e−
i
h̄

∫ t
0
E±(R(τ))dτe−iγ±(t)|ψ±(R(t)) > . (3.47)

The first exponential factor is the usual phase factor which an energy-
eigen state acquires upon time evolution. The only difference is that
in the present case the Hamiltonian is time-dependent, and this phase
factor is the product of infinitely many phase factors each corresponds
to an infinitesimal time evolution with the instantaneous energy eigen-
values appear in the exponent. The second phase factor is commonly
referred to as the Berry’s phase. Berry showed that

γ±(t) =
∫ t

0
dτ < ψ±(R(τ))|i ∂

∂t
|ψ±(R(τ)) > . (3.48)

Some discussions are in order regarding the above equation.
Eq. (3.48) assumes that the instantaneous eigenstate |ψ±(R(τ)) > is
differentiable with respect to t. Since eigenstates are only defined up to
a phase factor,2 we can certainly choose the phase factors (e.g. make
them change abruptly from one instant of time to the next) so that

2i.e. if |ψ±(R) > are eigenstates of H(R) so are eiφ± |ψ±(R) >
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∂
∂t
|ψ±(R(τ)) > does not exist. Eq. (3.48) implicitly assumes that we

choose the phase factors so that |ψ±(R(t)) > are differentiable over the
time period considered.

Now imagine during the time interval [0, T ] the R(t) slowly changed
in a full circuit C.3 Berry showed that the integral

γ±(T ) =
∫ T

0
dτ < ψ±(R(τ))|i ∂

∂t
|ψ±(R(τ)) >

=
∮
C
dR · [< ψ±(R)|∇R

i
|ψ±(R) >] = πQc (3.49)

where Qc = 0(mod2) or 1(mod2) depending on whether C encloses the
point R = 0 where the Hamiltonian is degenerate.

Obviously if |ψ±(R)) > is differentiable and single-valued as R
sweeps through a full circuit so does eiθ±(R)|ψ±(R)) >, assuming eiθ±(R)

is differentiable and single-valued. Upon this phase-transformation

γ±(T )→ γ±(T ) +
∮
dR · ∇Rθ±(R). (3.50)

The second term on the right is the integral of a total differential, hence
it vanishes upon the loop integration.

Let us demonstrate Berry’s theorem by using Eq. (3.46) as an exam-
ple. As we discussed before the instantaneous eigenstates of Eq. (3.46)
are

|ψ+(R) > =

(
cos

φ

2
|u > + sin

φ

2
|d >

)

|ψ−(R) > =

(
− sin

φ

2
|u > + cos

φ

2
|d >

)
, (3.51)

where cosφ = X√
X2+Y 2 and sinφ = Y√

X2+Y 2 . Although Eq. (3.51) are

legitimate eigenstates of Eq. (3.46), they are not single valued, for ex-
ample, on the unit circle enclosing R = 0. To make the eigenstates
single valued, we take advantage of the freedom of multiplying them by

3If R(t) sweeps through a full circuit, we need to choose the phase factors so
that |ψ±(R(t)) > are not only differentiable but also single valued.
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a phase factor. For example

|ψ+(R(t)) > = eiφ(t)/2

(
cos

φ(t)

2
|u > + sin

φ(t)

2
|d >

)

|ψ−(R(t)) > = eiφ(t)/2

(
− sin

φ(t)

2
|u > + cos

φ(t)

2
|d >

)
.(3.52)

are single-valued. Now it is simple to show that

< ψ+(R(t))|∇R

i
|ψ+(R(t)) >=

1

2
∇Rφ(t)

< ψ−(R(t))|∇R

i
|ψ−(R(t)) >=

1

2
∇Rφ(t). (3.53)

As the result∮
C
dR · [< ψ+(R(t))|∇R

i
|ψ+(R(t)) >] = π or 0∮

C
dR · [< ψ−(R(t))|∇R

i
|ψ−(R(t)) >] = π or 0 (3.54)

depending on whether φ went through a 2π loop.
In the above we stated Berry’s theorem without proof. The proof

of it will be presented in chapter 5, after we have discussed the pertur-
bation theory.

Although we demonstrate Berry’s theorem using a simple 2-state
problem as example, it turns out that we have actually covered the
most general case. This is because any real symmetric matrix can be
written as

M = λu|u >< u|+ λd|d >< d|+ rest. (3.55)

Since it is the first two terms that becomes “singular” at the degeneracy
point, we can simply concentrate on them.

3.6 A few words on the many spin prob-

lem

In the above we have seen the Hamiltonian of a single electron spin
in external magnetic field. In reality such an electron also have or-
bital degrees of freedom, i.e., the electron also moves around. However
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in condensed-matter physics there exists a insulating electronic state
where each electron localizes within a crystalline unit cell so that the
electron spin is the only dynamic freedom. A famous example is the
host compound of high-temperature superconductivity La2CuO4. A
caricature of this system is square lattices stacked in the third direc-
tion where on each lattice site sits an electron carrying a spin. It turns
out that the coupling between adjacent planes turns is very weak so
that we can think of one plane at a time. The Hamiltonian governing
such a system is given by the so-called Heisenberg model

H = J
∑
<ij>

Si · Sj. (3.56)

Here i and j labels sites of a square lattice. The question is what is the
ground state of such Hamiltonian, and what are its properties.

Until today this problem has not been exactly solved. The difficulty
of solving such a problem lies in the size of the Hilbert space. Since
each spins can be in either the “up” or “down” states, and since there
is a spin on each lattice site, the dimension of the Hilbert space is 2N

where N is the number of lattice sites. Thus to exactly solved the
problem we need to find the lowest eigenvector of a 2N × 2N matrix.
Remember that 210 ∼ 103, it is not surprising that we have not been
able to diagonalize such a Hamiltonian with N much greater than that.
In reality, of course, N ∼ 1023.

The above simple example illustrate the difficulty of many-body
problems – they have exponentially large Hilbert spaces.

3.7 A spinless particle moving in external

potential

As we learned in elementary quantum mechanics the Hilbert space of
a spinless single particle is spanned by {|x >} where x is the position
of the particle. Such basis set is constructed out of the eigenstates of
the position operator X. Indeed,

X|x >= x|x > . (3.57)
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Under this basis the matrix correspond to the position operator is

X↔ X(x,x′) = xδ(x− x′). (3.58)

The momentum operator P of the particle does not commute with the
position operator:

[Xα, Pβ] = ih̄δαβ. (3.59)

Sandwich the above equation between < x′| and |x > we obtain

(x′α − xα) < x′|Pβ|x >= ih̄δαβ < x′|x >= ih̄δαβδ(x
′ − x). (3.60)

As the result4

< x′|Pβ|x >=
ih̄δ(x′ − x)

x′β − xβ
=
h̄

i

∂

∂xβ
δ(x′ − x). (3.61)

Thus under the basis {|x >}

Xα = xα

Pβ =
h̄

i

∂

∂xβ
. (3.62)

Like {|x >} an equally good basis set is the momentum eigenstates
{|k >}. Each |k > satisfies

P|k >= h̄k|k > . (3.63)

Such a state can be expressed as linear combination of the position
eigenstates as

|k >=
∫
d3xφk(x)|x > . (3.64)

here

|φk(x) >=< x|k >, (3.65)

satisfies
h̄

i
∇φk(x) = h̄kφk(x). (3.66)

4limδ→0
1
x

1
π

δ
x2+δ2 = δ′(x).

36



The solution of the above equation is

φk(x) ∼ eik·x. (3.67)

Such wavefunction is commonly referred to as a “plane wave”. It is
normalizable assuming we impose the “periodic box boundary condi-
tion”. In that case the normalization factor is the volume L3 of the
box, and the momentum eigenvalue become quantized

k =
2π

L
(nx, ny, nz). (3.68)

It is worth noting that in the limit of infinite volume

1

L3

∑
nx,ny ,nz

=
∫ d3k

(2π)3
. (3.69)

The Hamiltonian for a particle moving in external potential is

H =
P 2

2m
+ U(X). (3.70)

Under the basis {|x >} it reads

H = − h̄2

2m
∇2 + U(x). (3.71)

3.8 Simple harmonic oscillator

The potential of a simple harmonic oscillator is

U(x) =
K

2
|x|2. (3.72)

In component for the Hamiltonian of such a system read

H =
3∑

α=1

[− h̄2

2m

∂2

∂x2
α

+
K

2
x2
α]. (3.73)

Since Eq. (3.73) is the sum of three independent one-dimensional simple
harmonic oscillator Hamiltonian, it is sufficient to concentrate on such
a problem

H1d =
P 2

2m
+
K

2
x2. (3.74)
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In the above P = h̄
i
∂
∂x

.
It is instructive to factorize H as follow

H =

 P√
2m

+ i

√
K

2
x

 P√
2m
− i

√
K

2
x

+
i

2

√
K

m
[P, x]. (3.75)

Since [P, x] = −ih̄ the above reduces to

H =

 P√
2m

+ i

√
K

2
x

 P√
2m
− i

√
K

2
x

+
h̄

2

√
K

m
. (3.76)

Let us look at the operators
(

P√
2m

+ i
√

K
2
x
)

and
(

P√
2m
− i

√
K
2
x
)
.

First we notice that they are the hermitian conjugate of each other.
Second let us see whether they commute

[

 P√
2m
− i

√
K

2
x

 ,
 P√

2m
+ i

√
K

2
x

] = i

√
K

m
[P, x] = h̄

√
K

m
.

(3.77)
Thus if we define

a ≡

h̄
√
K

m

−1/2 P√
2m
− i

√
K

2
x


a+ ≡

h̄
√
K

m

−1/2 P√
2m

+ i

√
K

2
x

 (3.78)

we have

[a, a+] = 1, (3.79)

and

H = h̄Ω[a+a+
1

2
]. (3.80)

In the above

Ω ≡
√
K

m
(3.81)

is the classical vibrational frequency of the oscillator.
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Thus in order to diagonalize H we have to find all eigenstates of
a+a. First we prove that all eigenvalues of this operator are greater or
equal to zero. Let |λ > be an eigenstate of a+a with eigenvalue λ, thus

λ =< λ|a+a|λ >=< φ|φ > ≥ 0 where |φ >= a|λ > . (3.82)

Next using Eq. (3.79) it is simple to prove that given a eigenstate
|λ > with eigenvalue λ, a+|λ > is an eigenstate with eigenvalue λ+1 and
a|λ > is an eigenstate with eigenvalue λ−1. In this way we can “raise”
and “lower” the eigenvalues as we wish. If the lowering process can
be continued without end, then negative eigenvalues will be generated
eventually, which violates Eq. (3.82). As the result there must exist an
eigenstate |0 > which upon acting by a vanishes

a|0 >= 0. (3.83)

By Eq. (3.83) such state satisfies

a+a|0 >= 0|0 > . (3.84)

which means that it is a state of zero eigenvalue.
The above arguments prove that the eigenvalues of a+a are all non-

negative integers and a tower of eigenstates can be generated by oper-
ating a+ on each states satisfying Eq. (3.83).

Next we show that there is only one state satisfying Eq. (3.83) and
explicitly find it. Let us expand |0 > in terms of the basis set {|x >}

|0 >=
∫
dxφ0(x)|x > . (3.85)

In the above φ0(x) =< x|0 > is what we call the wavefunction associ-
ated with |0 >. By taking the scalar product of Eq. (3.83) with < x|
we find ∫

dx′ < x|a|x′ >< x′|0 >= 0, (3.86)

or h̄
√
K

m

−1/2 1√
2m

h̄

i

∂

∂x
− i

√
K

2
x

φ0(x) = 0, (3.87)
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or (
∂

∂x
+

√
mK

h̄
x

)
φ0(x) = 0. (3.88)

Eq. (3.88) has a unique normalizable solution

φ0(x) =
1√
N
e
− x2

2l2
0 , (3.89)

where 1
l20
≡
√
mK
h̄

, and N is the normalization factor. By requiring∫
dx|φ0(x)|2 = 1 we find N =

√
πl0, thus

φ0(x) =
1√√
πl0

e
− x2

2l2
0 . (3.90)

The eigenfunctions of a+a with larger eigenvalues can all be generated
from φ0(x) as follow

φn(x) ∼

 1√
2m

h̄

i

∂

∂x
+ i

√
K

2
x

n φ0(x). (3.91)

Thus from |0 > we can generate a tower of eigenstates of Eq. (3.80),
namely

H(a+)n|0 >= (n+
1

2
)h̄Ω(a+)n|0 > . (3.92)

However it is important to note that the norm of (a+)n|0 > is not one.
In fa ct let |n > be the normalized nth state of H, then

|n+ 1 >=
1√
n+ 1

a+|n >

|n− 1 >=
1√
n
a|n > . (3.93)

Thus the normalized eigenstates are

|0 >, a+|0 >, 1√
2!

(a+)2|0 >, 1√
3!

(a+)3|0 >, etc. (3.94)
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Physically a+ and a “creates” and “annihilates” the excitation
quanta of the simple harmonic oscillator, and a+a counts them. From
this point of view the ground state |0 > is the vacuum of the oscilla-
tion quantum. Let me summarize the above discussion in the following
table

coordinate space oscillation quanta

Hamiltonian − h̄2

2m
∂2

∂x2 + K
2
x2 h̄Ω(a+a+ 1

2
)

Ground state ∼ e
− x2

2l2
0 |0 >

Excited state ∼
(

1√
2m

h̄
i
∂
∂x

+ i
√

K
2
x
)n
e
− x2

2l2
0 ∼ (a+)n|0 >

After we understood the one-dimensional simple harmonic oscillator
it is trivial to understand the three-dimensional one. The Hamiltonian
is given by

H = h̄Ω(a+
x ax + a+

y ay + a+
z az +

3

2
), (3.95)

and the eigenstates are now labeled by three integers (|nx, ny, nz >)
correspond to the number of oscillation quanta in x, y, z direction re-
spectively.

3.9 The coherent state

The peculiar state
|φ >≡ eφa

+|0 >, (3.96)

where φ is a complex scalar is the eigenstate of a, and

a|φ >= φ|φ > . (3.97)

To prove the above equation we note that

[a, f(a+)] = f ′(a+), (3.98)

and that f(a+)a|0 >= 0. The state in Eq. (3.96) is called the coherent
state. Physically it correspond to the state in which the oscillation
quanta (Bose particles) of the harmonic oscillator have condensed. It
is simple to show that the norm of Eq. (3.96) is e|φ|

2
, and

< φ′|φ >= eφ
′∗φ. (3.99)
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Moreover ∫ dφ

π
e−|φ|

2|φ >< φ| = I. (3.100)

3.10 The hydrogen atom

The central triumph of early quantum mechanics is the ability to solve
the hydrogen atom problem exactly. The hydrogen atom consists of two
particles, a proton and an electron. The Hamiltonian for this problem
is given by

H = − h̄2

2M
∇2
X −

h̄2

2m
∇2
x −

e2

|X− x|
. (3.101)

In the above M and m are the proton and electron mass respectively,
and X and x are the proton and electron coordinate.

Due to the fact that the center of mass experiences no force we make
the following coordinate transformation

x, X→ R ≡ m

m+M
x +

M

m+M
X, r ≡ x−X. (3.102)

In terms of the new coordinate the Hamiltonian read

H = − h̄2

2(M +m)
∇2
R −

h̄2

2µ
∇2
r −

e2

r
. (3.103)

The eigen wavefunction of Eq. (3.103) is obviously of the form

ek ·Rψ(r). (3.104)

The eigen energy is the sum of h̄2k2

2(M+m)
and E where

[
− h̄

2

2µ
∇2
r −

e2

r

]
ψ(r) = Eψ(r). (3.105)

(Here µ = Mm
M+m

)
To solve Eq. (3.105) we relies on the symmetry reduction. Since the

Hamiltonian in Eq. (3.105) is invariant under the spatial rotation, the
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eigen function can be chosen as eigen functions of the angular momen-
tum operator L2 and Lz, i.e.

L2ψ(r, θ, φ) = h̄2l(l + 1)ψ(r, θ, φ)

Lzψ(r, θ, φ) = mh̄ψ(r, θ, φ). (3.106)

Since in general we can write

ψElm(r, θ, φ) =
∑
l′

l′∑
m′=−l′

REl′m′(r)Yl′m′(θ, φ), (3.107)

the above symmetry argument suggests that RElm 6= 0 for only l′ = l
and m′ = m.

Thus without loosing any generality we can write

ψE,l,m(r) = RElm(r)Ylm(θ, φ). (3.108)

Recall Eq. (4.54) and the fact that

∇2 =
1

r2

∂

∂r

(
r2 ∂

∂r

)
− L2

h̄2r2
, (3.109)

we have, by Eq. (3.106)[
− h̄2

2µr2

∂

∂r

(
r2 ∂

∂r

)
+
l(l + 1)h̄2

2µr2
− e2

r

]
RElm(r) = ERElm(r). (3.110)

Since the left hand side of Eq. (3.110) does not depend onm we conclude

RElm(r)→ REl(r). (3.111)

Eq. (3.110) can be solved by brute force power series techniques under
the boundary condition that R is finite at r = 0 and

∫
4πr2R2(r)dr =

finite.5 Here we review the solution. First we let

E → E
me4

2h̄2

r → h̄2

me2
r. (3.112)

5This boundary condition limits us to finding the bound state solution.
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In terms of the new E and r the equation read[
− 1

r2

∂

∂r

(
r2 ∂

∂r

)
+
l(l + 1)

r2
− 2

r

]
RElm(r) = E ′RElm(r). (3.113)

Let

REl(r) ≡
uEl(r)

r
. (3.114)

The boundary condition requires that uEl(r) → 0 for both r → 0 and
r →∞.

The differential equation that uEl satisfies is

d2uEl
dr2

+

[
E +

2

r
− l(l + 1)

r2

]
uEl = 0. (3.115)

In the limit of large r the above equation reduces to

d2uEl
dr2

+ EuEl = 0. (3.116)

As the result
uEl(r)→ e±

√
|E|r as r →∞. (3.117)

In the above + applies to the case of E > 0 and − to E < 0. As
the result the asymptotic equation has decaying solutions only when
E < 0. For r → 0 Eq. (3.115) approaches

d2uEl
dr2

− l(l + 1)

r2
uEl = 0. (3.118)

As the result we expect

uEl(r)→ rl+1 as r → 0. (3.119)

Thus we write
u(r) = w(r)e−

√
|E|r, (3.120)

and expect w(r)→ rl+1 as r → 0. The Equation that w satisfies is

w′′ − 2
√
|E|w′ +

(
2

r
− l(l + 1)

r2

)
w = 0. (3.121)
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Eq. (3.121) can be solved by means of a power series in r, beginning
with a term in rl+1, thus

w(r) =
∞∑

k=l+1

ckr
k. (3.122)

Substitute Eq. (3.122) into Eq. (3.121) we obtain the recursion relation

ck+1 = 2

 k
√
|E| − 1

k(k + 1)− l(l + 1)

 ck. (3.123)

The above recursion relation dictates that as k →∞

ck+1

ck
→ 2

√
|E|

(k + 1)
. (3.124)

If this ratio holds then w behaves, for large r, as e2
√
|E|r. In that case u

is not bounded. Exception occurs when the series Eq. (3.123) is broken
off at some value of k. This means that√

|E| = 1

k
, or E = − 1

k2
, (3.125)

which in original unit means that

E = − µe4

2h̄2k2
, k = l + 1, ... (3.126)

3.11 Feynman path integrals

In this section we focus on a particle moving in one-dimension under
potential U(x). At the end of the section we will generalize the result
to three dimensions.

Suppose the particle is in the position eigenstate |x > at t = 0,
according to the Schrödinger equation it should be in the state

e−
i
h̄
tH |x >, (3.127)

45



at time t. Thus the probability amplitude that such particle will be in
the position eigenstate |x′ > is

G(x′, t;x, 0) =< x′|e−
i
h̄
tH |x > . (3.128)

Following Feynman, in the following we develop a means to compute
such quantity.

Let us split the time elapse into N infinitesimal pieces

e−
i
h̄
tH = e−

i
h̄
εH ...e−

i
h̄
εH . (3.129)

In the above ε = t/N . Thus Eq. (3.128) becomes

G(x′, t;x, 0) =< x′|e−
i
h̄
εH ...e−

i
h̄
εH |x > . (3.130)

Next we insert the identity operator

I =
∫
dy|y >< y| (3.131)

between two adjacent time evolution operator to get

G(x′, t;x, 0) =
∫ N−1∏

i=1

dyi < x′|e−
i
h̄
εH |yN−1 >< yN−1|...|y1 >< y1|e−

i
h̄
εH |x > .

(3.132)
Next we compute

< yi+1|e−
i
h̄
εH |yi >=< yi+1|e−

i
h̄
εP

2

2m e−
i
h̄
εU(x)|yi > . (3.133)

A word of caution should be given here. In general

eA+B 6= eAeB. (3.134)

The equality holds when [A,B] = 0. Since [ε P
2

2m
, εU(x)] = O(ε2) they

can be regarded as commutative as ε→ 0. Since |yi > are the eigenstate
of the position operator Eq. (3.133) becomes

< yi+1|e−
i
h̄
εH |yi >=< yi+1|e−

i
h̄
εP

2

2m |yi > e−
i
h̄
εU(yi). (3.135)
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Now

< yi+1|e−
i
h̄
εP

2

2m |yi > =
∫ dp

(2π)
< yi+1|p > e−

i
h̄
ε h̄

2p2

2m < p|yi >

=
∫ dp

(2π)
eip(yi+1−yi)e−

i
h̄
ε h̄

2p2

2m

=
∫ dp

(2π)
e−

i
h̄
ε h̄

2

2m
(p−m yi+1−yi

εh̄
)2

e
i
h̄
εm

2

(
yi+1−yi

ε

)2

∝ e
i
h̄
εm

2

(
yi+1−yi

ε

)2

. (3.136)

Thus

< yi+1|e−
i
h̄
εH |yi >∝ e

i
h̄
εm

2

(
yi+1−yi

ε

)2

e−
i
h̄
εU(yi). (3.137)

Thus

G(x′, x; t, 0) ∝
∫
y0=x;yN=x′

N∏
i=0

dyie
i
h̄
ε[m

2

(
yi+1−yi

ε

)2

−U(yi)]
. (3.138)

In the limit ε→ 0 we have

G(x′, x; t, 0) ∝
∫
y(0)=x;y(t)=x′

D[y(τ)]e
i
h̄
S[y(τ)]

S[y(τ)] =
∫ t

0
dτ [

m

2
˙y(τ)

2
− U(y(τ))]. (3.139)

Physically Eq. (3.139) depicts a sum over all possible “path” of the
particle leading from y = x at τ = 0 to y = x′ at τ = t where each path
is weighted by the phase factor e

i
h̄
S[y(τ)].

Eq. (3.139) can easily be generalized to three-dimension

G(x′,x; t, 0) ∝
∫

y(0)=x;y(t)=x′
D[y(τ)]e

i
h̄
S[y(τ)]

S[y(τ)] =
∫ t

0
dτ [

m

2
|ẏ(τ)|2 − U(y(τ))]. (3.140)
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3.12 Classical approximation

In the limit h̄→ 0, the contribution to G(x′, t; x, 0) entirely comes from
the stationary path yc(τ) which satisfies

δS[y(τ)]

δy(τ)
= 0, (3.141)

and
yc(0) = x, yc(t) = x′. (3.142)

The left hand side of Eq. (3.141) is called the “functional derivative” of
S. One way to perform such derivative it is best to imagine discretize
y(τ) into yj = y(jε) and simply perform the ordinary partial differen-
tiation. After that is done take the ε→ 0 limit of the result. Another
way is to imagine deform the path

y(τ)→ y(τ) + δy(τ). (3.143)

(In order to fulfill Eq. (3.142) we must have δy(0) = δy(t) = 0.) To
linear order in δy(τ) the change in action due to such deformation is

δS =
∫ t

0
dτ [mẏ(τ) · ˙δy(τ)−∇U(y(τ)) · δy(τ)]

=
∫ t

0
dτδy(τ) · [−mÿ(τ)−∇U(y(τ))] (3.144)

δS[y(τ)]
δy(τ)

is defined as

δS[y(τ)]

δy(τ)
= −mÿ(τ)−∇U(y(τ)). (3.145)

Thus Eq. (3.141) implies

mÿ = −∇U(y), (3.146)

which is the Newton equation. Thus yc(τ) is the solution of Newton
equation under the condition yc(0) = x and yc(t) = x′.

It is quite satisfactory that in the limit of vanishing h̄ the contribu-
tion to the path integral in Eq. (3.139) entirely comes from the classical
path.
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Once we obtained G(x′, t; x, 0) we can obtain the time-dependent
wavefunction easily. Assume that the system is initially in state |ψ >,
upon time evolution it becomes

|ψ(t) >= e−
i
h̄
tH |ψ >=

∫
d3x′e−

i
h̄
tH |x′ >< x′|ψ > . (3.147)

Thus
ψ(x, t) =

∫
d3x′G(x, t; x′0)ψ(x′). (3.148)

3.13 Quantum statistical mechanics as

Feynman path integrals in imaginary

time

Like in classical statistical mechanics the partition function

Z =
∑
a

< a|e−βH |a >, (3.149)

is of central importance in quantum statistical mechanics. In the above
{|a >} is any orthonormal basis. In the special case of single particle
moving external potential we can take |a > as the position eigenstates.
Thus

Z =
∫
d3x < x|e−βH |x > . (3.150)

Compare with Eq. (3.139) we can view the partition function as the
integral over the imaginary time Feynman amplitude:

Z ∼
∫
d3xG(x, ih̄β;x, 0). (3.151)

3.14 From classical to quantum mechan-

ics

3.14.1 Route I

The above exercise suggest the following passage from classical to quan-
tum mechanics:

49



Classical Quantum
Action S =

∫
dtL[qj(τ), q̇j(τ)] S =

∫
dtL[qj(τ), q̇j(τ)]

Dynamics δS[qj(τ)]/δqk(τ) = 0 Probability amplitude
+ initial and final condition ∝

∫
qj(0)=qj ;qj(t)=q′j

D[qj(τ)]

→ classical path e
i
h̄
S[qj(τ)]

3.14.2 Route II

This alternative route to quantum mechanics is referred to as the
“canonical quantization procedure”.

Classical Quantum
Action S =

∫
dtL[qj(τ), q̇j(τ)] S =

∫
dtL[qj(τ), q̇j(τ)]

Hamiltonian H(pj, qj) =
∑
j pj q̇j − L(qj, q̇j) same expression H(pj, qj)

where q̇j is substituted by p’s plus the commutation relation
via pk = ∂L[qj, q̇j]/∂q̇k [qj, pk] = ih̄δjk

Dynamics q̇k = ∂H/∂pk e−
i
h̄
tH is the

ṗk = −∂H/∂qk time-evolution operator

We will omit the proof but it is straightforward to show that these
two routes are equivalent. With route II it is possible to write down
the quantum Hamiltonian knowing the classical one.

3.15 Quantum dynamics in the presence

of electromagnetic field

Electromagnetic field affects the dynamics of a charged particles. let
A0 and A be the scalar and vector potential, i.e.

E = −∇A0 −
1

c

∂A

∂t
B = ∇×A. (3.152)

The time-dependent Schrödinger equation that the coordinate-space
wavefunction of a charge-q particle satisfies is

(ih̄
∂

∂t
− qA0)ψ(x, t) =

1

2m
(
h̄

i
∇− q

c
A)2ψ(x, t). (3.153)
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Compare with the free Schrödinger equation of neutral particle we find
the following substitution

h̄

i

∂

∂t
→ (

h̄

i

∂

∂t
+ qA0)

h̄

i
∇ → h̄

i
∇− q

c
A. (3.154)

3.16 Gauge invariance

Eq. (3.153) is invariant under the following transformation

A0 → A0 −
1

c
∂tΛ

A→ A +∇Λ

ψ(x, t)→ ei
q
h̄c

Λψ(x, t). (3.155)

Eq. (3.155) is called the gauge transformation.
Eq. (3.153) implies that the Hamiltonian of a charged particle is

H(t) =
1

2m
(
h̄

i
∇− q

c
A(x, t))2 + qA0(x, t). (3.156)

Repeating the derivation of the Feynman propagator

G(x′, t; x, 0) =
∫

y(0)=x;y(t)=x′
D[y(τ)]e

i
h̄
S, (3.157)

where

S[y(τ)] =
∫ t

0
dτ{m

2
|ẏ|2 − qA0(y(τ)) +

q

c
ẏ ·A(y(τ))}. (3.158)

Eq. (3.158) is the action for a charged particle interacting with the
electromagnetic field. The classical equation of motion is

δS[y(τ)]

δyα(τ)
= 0. (3.159)

Actual calculation of the left hand side of the above equation gives

−mÿα − q∂αA0 −
q

c
Ȧα +

q

c
ẏβ(∂αAβ − ∂βAα) = 0. (3.160)
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Since

∂αAβ − ∂βAα = εαβγBγ, (3.161)

and

Eα = −∂αA0 −
1

c
Ȧα, (3.162)

we have

mÿα = −qEα +
q

c
εαβγ ẏβBγ. (3.163)

Restore to the vector form we recover the Lorentz force law

mÿ = qE +
q

c
ẏ ×B. (3.164)

Using Eq. (3.156) as the Hamiltonian we can define the time evolu-
tion operator (Eq. (3.10)) U(t; 0) and hence define

XH = U(t; 0)+XU(t; 0)U(t; 0)

PH = U(t; 0)+PU(t; 0)U(t; 0). (3.165)

According to the Heisenberg equation of motion

ẊH =
i

h̄
[H(t)H ,XH ] =

i

h̄
U(t; 0)+[H(t),X]U(t; 0)

ṖH =
i

h̄
[H(t)H ,PH ] =

i

h̄
U(t; 0)+[H(t),P]U(t; 0). (3.166)

Let us now compute [H(t),X],

.[H(t),X] = −ih̄
m

[P− q

c
A(X, t)]. (3.167)

As the result

ẊH =
1

m
[PH −

q

c
A(XH , t)]. (3.168)

Next we compute [H(t),P− q
c
A(X, t)].

[H(t), Pα −
q

c
Aα(X, t)] = ih̄q∂αA0 − ih̄

q

2mc
εαβγ{(Pβ −

q

c
Aβ)Bγ

+Bγ(Pβ −
q

c
Aβ)}. (3.169)
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In the above
Bα ≡ εαβγ∂βAγ, (3.170)

is an operator itself. Thus

mẌαH = −q∂αA0H −
q

c
∂tAαH +

q

2c
εαβγ(ẊβHBγH +BγHẊβH). (3.171)

We note that the second term on the righthand side of the above equa-
tion is due to the fact that the operator whose time derivative is com-
puted has explicit time dependence. Eq. (3.171) is the quantum version
of the Lorentz force law.

3.17 Current conservation

In the Heisenberg picture the operators corresponds to charge density
is

ρH(x, t) = qδ(x−XH(t)). (3.172)

Note that in the above equation x is a c-number vector. According to
the Heisenberg equation

ρ̇H =
i

h̄
[HH , qδ(x−XH(t))]. (3.173)

Let us compute [H, qδ(x−X)].

[H, qδ(x−X)] = − qh̄

2mi
[(P− q

c
A)·∇xδ(x−X)+∇xδ(x−X)·(P− q

c
A)].

(3.174)
Thus

ρ̇H +
q

2m
∇x · {(PH −

q

c
AH)δ(x−XH) + δ(x−XH)(PH −

q

c
AH)} = 0,

(3.175)
or

ρ̇H +
q

2
∇x · {ẊHδ(x−XH) + δ(x−XH)ẊH} = 0. (3.176)

This suggest that the current operator is given by

jH(x, t) =
q

2
{ẊHδ(x−XH) + δ(x−XH)ẊH}. (3.177)
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3.18 The Aharonov-Bohm effect

To simplify the situation let us consider the case where the space di-
mension is two. Consider a source of electrons and a pair of slits. On
the opposite side of the slits there is a detector screen. In the region
between the slits and the screen there is an idea solenoid which confines
a magnetic flux Φ perpendicular to the plane.

Let us consider the Feynman amplitude G(x′, t;x, 0) given by
Eq. (3.157) and Eq. (3.158). The probability that an electron leav-
ing the source x = 0 at t = 0 arriving at a spot x on the screen at time
t is given by

P (x′t;x, 0) = G∗(x′, t;x, 0)G(x′, t;x, 0)∫ y1(t)=y2(t)=x′

y1(0)=y2(0)=x
D[y1]D[y2]e

i
h̄
{S[y1(τ)]−S[y2(τ)]}. (3.178)

In the above

S[y(τ)] =
∫ t

0
dτ{m

2
|ẏ|2 +

q

c
ẏ · A(y(τ))}. (3.179)

The collection of all possible pairs of path (y1(τ), y2(τ)) can be sep-
arated into two categories. For the first type the path y1(τ) and the
time reversed path y2(τ) enclose the solenoid, and for the second type
they don’t. Let us concentrate on the contribution of the second term
to the action

q

c

∫ 2

0
[ẏ1 · A(y1)− ẏ2 · A(y2)]dτ

=
q

c
[
∫
path1

dy1 · A(y1)−
∫
path2

dy2 · A(y2)]

=
q

h̄c

∮
C
dy ·A

=
q

h̄c

∫ ∫
da · ∇ ×A

=
q

h̄c
φ. (3.180)

In the above C is the oriented closed curve corresponds to P1 − P2,
and da is the oriented area element (using the right-handed rule) of
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the surface enclosed by C, and φ is magnetic flux passing through the
surface.

Thus if (P1, P2) belongs to the first category, φ = ±Φ and if (P1, P2)
belongs to the second category φ = 0. In order to calculate the con-
tribution of the two family of pairs of path we define a pair reference
paths P and P ′. First we choose Pa and Pb so that (Pa, Pb) is a pair in
the first category.

Now let us calculate the contribution of the second category to the
probability. It is apparent that this contribution is of the form

[
∑

P,(P,Pa)∈2nd cat

eiθP ][
∑

P ′,(P ′,Pa)∈2nd cat

e−iθP ′ ] + [
∑

P,(P,Pb)∈2nd cat

eiθP ][
∑

P ′,(P ′,Pb)∈2nd cat

e−iθP ′ ]

= |A|2 + |B|2. (3.181)

As to the first category∫
1st category

D[y1, y2]e
i
h̄

(S[y1]−S[y2]) =
(∑

eiθ12

)
ei

q
h̄c

Φ+c.c. = 2|C|2 cos
(
δ +

q

h̄c
Φ
)

(3.182)
Thus

P (x′, t;x, 0) ∼ |A|2 + |B|2 + 2|C|2 cos
(
δ +

q

h̄c
Φ
)
. (3.183)

Thus every time

Φ = n
hc

q
(3.184)

the interference pattern repeats.

3.19 Magnetic monopole

In ordinary electricity and magnetism there are free electric charges
(electric monopoles) but no free magnetic charges (magnetic monopole).
There is no physical principle that prohibit the existence of magnetic
monopole. However they simply do not occur - no one has ever made
an observation of a magnetic monopole. Despite of this, interest in
magnetic monopoles has appeared and reappeared over the years. If
the magnetic monopole exist then the following modification of the
Maxwell equation is necessary
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∇ · E = 4πρe

∇ ·B = 4πρm

∇× E +
1

c

∂B

∂t
= −4π

c
jm

∇×B− 1

c

∂E

∂t
=

4π

c
je. (3.185)

In the above ρe, je and ρm, jm are the density and current of electric
charge and magnetic monopole respectively.

One immediate consequence of the existence of monopole is that
the vector potential can not be defined everywhere. This is because if
B = ∇×A necessitate the equality ∇ ·B = 0.

In the following we look more closely at the situation where a mag-
netic monopole of strength Qm sits at the origin, i.e.,

∇ ·B = 4πQmδ(x). (3.186)

Let Γ be the space with the origin excluded. In Γ we have ∇ · B =
0, hence it is still possible to write B = ∇ × A. In the following
we prove that despite the above it is not possible to define a A that
is non-singular and differentiable through out Γ. To prove that let
us consider a sphere S in Γ that encloses the origin. Let us draw a
oriented close curve C (say the equator) on the sphere. Such curve
divide the sphere into two parts S1 (the northern hemisphere) and S2

(the southern hemisphere). Let us consider
∮
C dx ·A. According to the

Stokes theorem∮
C
dx ·A =

∫ ∫
S1

da · ∇ ×A = −
∫ ∫

S2

da · ∇ ×A. (3.187)

In the above we have assumed that the oriented surface S1 has the
same orientation (according to the right-hand rule) as C while S2 has
the opposite orientation. As the result∫ ∫

S1

da ·B +
∫ ∫

S2

da ·B = 0. (3.188)

However according to the divergence theorem the left-hand-side of the
above equation is equal to 4πQm. This establishes the fact that it is
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impossible to define a non-singular and differentiable vector potential
throughout Γ.

However the very concept of gauge transformation allow us to define
the vector potential in different region of space using different gauges.
Thus as long as we can vector potentials A1 and A2 where A1 is non-
singular in S ′1 ⊂ S (say the upper hemisphere) and A2 is non-singular
in S ′2 ⊂ S (say the lower hemisphere), and that S ′1

⋃
S ′2 ⊃ S, and

A1 −A2 = ∇χ in S ′1
⋂
S ′2 (say a strip around the equator), we have a

legitimate vector potential defined over S.
In classical physics the strength of the magnetic monopole (Qm) can

be arbitrary. In particular it is unrelated to the fundamental unit of
charge e. However in quantum mechanics internal consistency imposes
a constraint on Qm. Furthermore this constraint relate Qm to the
fundamental electric charge. This incredible relation is discovered by
P.A.M. Dirac.

Let us imagine a charge e particle confined to S. Let us consider
Feynman’s amplitude (Eq. (3.139)) between two points on the equator
of S . In computing the path integral we encounter two paths along
the equator which links the two points. The relative phase factor due
to the vector potential is

e
ie
h̄c

∮
C dx·A = e

ie
h̄c

∫ ∫
S1
da·∇×A1

= e
− ie
h̄c

∫ ∫
S2
da·∇×A2

. (3.189)

As the result

e
ie
h̄c

[
∫ ∫

S1
da·∇×A1+

∫ ∫
S2
da·∇×A2]

= e
ie
h̄c

∫ ∫
S
da·B = e

ie
h̄c

4πQm = 1. (3.190)

As the result
e

h̄c
4πQm = 2πn, (3.191)

or

Qme =
n

2

h̄c

e
=

n

4π
Φ0. (3.192)

Thus the internal consistency of quantum mechanics quantize the
charge of magnetic monopoles!
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Chapter 4

Symmetry in quantum
mechanics

4.1 General discussions

In quantum mechanics most symmetry operation (with time reversal
an exception) are implemented by unitary operators. Symmetry group
is a set of such operators which has group structure.

There are two types of symmetry group: discrete and continuous.
A discrete group contains finite number of elements. For example the
space inversion and identity operator form a 2-element discrete group
{I, P}. An example of the continuous group is the group of rotation
around an fixed, say ẑ, axis. A group element g is labeled by a param-
eter θ - the angle of rotation. The element corresponds to θ = 0 is the
identity, and elements correspond to θ ≈ 0 is “very close” to identity.
To be more specific

g(ε) = I − εO. (4.1)

Since g+ = g−1 we require O+ = −O. Thus we write O = iQ where Q
is hermitian. As the result

g(ε) = I − iεQ. (4.2)

Q is called the “generator” of the group.

When we say a physical system is invariant under a symmetry group
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G, what we mean is

g−1Hg = H ∀ g ∈ G, (4.3)

where H is the Hamiltonian.1 Eq. (4.3) is equivalent to

Hg = gH or [H, g] = 0. (4.4)

Thus the elements of a symmetry group all commute with the Hamil-
tonian.

It is simple to show that the validity of Eq. (4.3) for all elements of
a continuous group requires that the generator(s) must commute with
the Hamiltonian, i.e.,

[H,Q] = 0. (4.5)

A consequence of Eq. (4.5) is that

QH = U+(t; 0)QU(t; 0) (4.6)

is a conserved quantity. This is simple to prove because according to
the Heisenberg equation

dQH

dt
=
i

h̄
[HH , QH ] =

i

h̄
U+(t; 0)[H,Q]U(t; 0) = 0. (4.7)

Another important usage of a symmetry group is that it helps us
to diagonalize the Hamiltonian. Let us suppose that Eq. (4.3) is true,
and |n > is an eigenstate of H with eigenvalue En. Then g|n > is also
an eigenstate of H with the same eigenenergy, because

Hg|n >= gH|n >= Eng|n > . (4.8)

Suppose |n > and |n′ >= g|n > represent different states. Then these
are two states with the same energy, i.e., they are degenerate. We
can repeat the same procedure over and over until we generate a set of
states {|n >, |n′ >, |n′′ >, ...} so that when any element of the symmetry
group acts on any of the above states the outcome is a state that can
be expressed as linear combination of states that are already in the
list. When that happens we say that {|n >, |n′ >, ...} form an invariant

1If H is time dependent we must require that Eq. (4.3) is valid at all time.
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space of the symmetry group. Thus the degenerate eigenstates of the
Hamiltonian form an invariant space of the symmetry group.

A invariant space of a symmetry group G is said to be irreducible if it
is impossible to find a subspace of it which is also invariant underG. Let
{|n >} be an orthonormal basis spanning an irreducible representation
space V . If H is invariant under G then

1. |n′ >≡ H|n>√
<n|H+H|n>

are a orthonormal set.

2. {|n′ >} also spanned an irreducible invariant space V ′ of G.

3. The representation carried by V and V ′ are identical.

Proof:

1. Although in general H|n > does not have to stay in V , H+H|n >
does.

2. H+H can be diagonalized in V , i.e., H+H =
∑
n λn|en >< en|.

3. Since [H+H, g] = 0 for all g ∈ G we have < en|[H+H, g]|em >=
(λn − λm) < en|g|em >= 0. Thus if λn 6= λm, < en|g|em >=
0 for all g. In other words the degenerate subspace of H+H
further divide V into subspaces that are invariant under G. This
contradict the statement that V is irreducible.

4. Thus the entire V is a degenerate space of H+H.

5. As the result < n|H+H|m >= λδnm, and < n′|m′ >= δnm.

6. Let g|n >=
∑
m gmn|m >. Thus the matrix that represent g in V

is gmn. Since H commutes with all g we have g|n′ >= gH |n>√
λ

=

Hg |n>√
λ

= 1√
λ

∑
m gmn|m >=

∑
m gmn|m′ >.

Because of the above theorem to diagonalize H we should i) collect
all equivalent irreducible invariant space of the symmetry group G of
H, ii) Choose the basis set in each space so that the matrices that
represent the element of G are identical in all spaces, iii) to find an
eigenstate of H linearly combine the corresponding basis vector in all
spaces, i.e., a1|n > +a2|n′ > +a3|n′′ > +....
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4.2 Translation

The group of space translation is a continuous group. The element of
this group displaces the physical system under study by a fixed amount
a. Under such operation the state of a particle changes according to

|ψ >→ T (a)|ψ > . (4.9)

The translation group is “Abelian” because

T (a)T (b) = T (b)T (a) = T (a + b). (4.10)

In the following we find the representation of the translation group
in the space spanned by the position eigenstates of a spinless particle.
Let |x > be such a state

T (a)|x >= |x + a > . (4.11)

To find out the effect of T (a) on a general state |ψ >. Let us expand
|ψ > as linear combination of {|x >}

|ψ >=
∫
d3xg(x)|x > . (4.12)

The translated state T (a)|ψ > is given by

T (a)|ψ >=
∫
d3xg(x)|x + a > . (4.13)

Thus
< x|T (a)|ψ >=< x− a|ψ >, (4.14)

or
ψT (x) = ψ(x− a). (4.15)

Any operation of space translation can be achieved by consecutive
infinitesimal displacements, i.e.

T (a) = [T (εâ)]N , (4.16)

where Nε = a. The effect of an infinitesimal displacement is

ψT (x) = ψ(x− εâ) = ψ(x)− εâ · ∇ψ(x) = [I − εâ · ∇]ψ(x)

= [I − ih̄εâ ·P]ψ(x). (4.17)
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In the above we have used the fact that under the position eigenbasis

P =
h̄

i
∇. (4.18)

Consequently

T (εâ) = I − i

h̄
εâ ·P = e−

i
h̄
εâ·P. (4.19)

Substitute Eq. (4.19) into Eq. (4.16) we obtain

T (a) =
(
e−

i
h̄
εâ·P

)N
= e−

i
h̄

a·P. (4.20)

Due to this equation the three components of the momentum operator
are called the “generators” of space translations.

Due to Eq. (4.20) the momentum eigenstates are also the eigenstates
of the translation operators, i.e.,

T (a)|k >= e−
i
h̄
h̄k·a|k >= e−ik·a|k > . (4.21)

Phrased in terms of the wavefunction since

ψ(x) = eik·x, (4.22)

we have

ψT (x) = ψ(x− a) = eik·(x−a) = e−ik·aψ(x). (4.23)

Thus each of the momentum eigenstate |k > span an invariant space
of the translation group. The matrix representing T (a) is the scalar
e−ik·a. These representations are obviously irreducible.

4.3 Rotation

4.3.1 General discussions

Let us first concentrate on the effect of space rotation on the states of
a spinless particle. Upon space rotation

|ψ >→ R|ψ > . (4.24)
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The space rotations are characterized by a vector ~θ, where θ̂ is the axis
around which the rotation is performed and θ is the angle of rotation.
The effect of space rotation on the position eigenbasis is

R(~θ)|x >= |xR >, (4.25)

where xR = R(~θ)x is the rotated position. The effect of space rotation
on a general state |ψ >=

∫
d3xg(x)|x > is

|ψR >=
∫
d3xg(x)|R(~θ)x >, (4.26)

or
ψR(x) = ψ(R−1(~θ)x). (4.27)

As translations, space rotation can be achieved by consecutive infinites-
imal rations, i.e.,

R(~θ) = [R(εθ̂)]N . (4.28)

The effect of R(εθ̂) on the wavefunction is

ψR(x) = ψ(R−1(εθ̂)x). (4.29)

To figure out what is the new position x′ = R−1(εθ̂)x let us choose the
coordinate axis so that θ̂ coincide with ẑ. In that casex

′

y′

z′

 =

 cos ε sin ε 0
− sin ε cos ε 0

0 0 1


xy
z


=

 1 ε 0
−ε 1 0
0 0 1


xy
z

 . (4.30)

Thus

ψR(x, y, z) = ψ(x+ εy,−εx+ y, z)

= ψ(x, y, z) + ε

(
y
∂

∂x
− x ∂

∂y

)
ψ(x, y, z)

=
[
I +

i

h̄
ε(yPx − xPy)

]
ψ(x, y, z)

=
[
I − i

h̄
εLz

]
ψ(x, y, z) (4.31)
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In the above
Lz ≡ (x×P)z, (4.32)

is the angular momentum operator. Thus

R(εẑ) = I − i

h̄
Lz = e−

i
h̄
εLz , (4.33)

and
R(θẑ) = e−

i
h̄
θLz . (4.34)

Now if we restore the general coordinate choice

R(~θ) = e−
i
h̄
~θ·L. (4.35)

Thus the angular momentum operator is the generator of space rota-
tion. Unlike space translation the rotation group is not Abelian. This
is because different component of the momentum operator do not com-
mute. Indeed explicit calculation of the commutation relation using
[xα, Pβ] = ih̄δαβ and L = x×P gives

[Lα, Lβ] = ih̄εαβγLγ. (4.36)

Lα are called the “generator” of the rotation group. Due to the fact that
the generators do not commute the rotation group is “non-Abelian”.

What are the irreducible representation of the rotation group? Ob-
viously any invariant space of the rotation group must also be invariant
under the action of its three generators. In such a space each of the
three generators will be represented by a matrix, and the commutation
relation in Eq. (4.36) is satisfied by these matrices.

It is straightforward to show that according to Eq. (4.36) the oper-
ator

L2 ≡ L2
x + L2

y + L2
z, (4.37)

commute with all components of L, i.e.

[L2, Lα] = 0 ∀ α. (4.38)

Due to Eq. (4.36) it is not possible to find state that are the simul-
taneous eigenstate of the three components of the angular momentum
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operator. However we can do the next best thing, namely, finding the
smallest state space in which the rotation operator is fully contained.

Since L2 commutes with all three components of L, we can simul-
taneously diagonalize, for example, L2 and Lz. Let |l,m > be a state
satisfying

L2|λ, η >= λ|λ, η >
Lz|λ, η >= η|λ, η > . (4.39)

Then L+|λ, η > and L−|λ, η > are eigenstates of L2 with eigenvalue λ
and eigenstates of Lz with eigenvalues η + h̄ and η− h̄ respectively. In
the above

L+ = Lx + iLy

L− = Lx − iLy. (4.40)

To prove the above statement we note that

[Lz, L
+] = h̄(iLy + Lx) = h̄L+

[Lz, L
−] = h̄(iLy − Lx) = −h̄L−. (4.41)

As the result

LzL
+|λ, η >= L+Lz|λ, η > +h̄L+|λ, η >= (η + h̄)L+|λ, η >

LzL
−|λ, η >= L−Lz|λ, η > −h̄L+|λ, η >= (η − h̄)L−|λ, η > .(4.42)

The norm of L+|λ, η > is

< λ, η|L−L+|λ, η >=< λ, η|L2
x + L2

y − i[Ly, Lx]|λ, η >
=< λ, η|L2 − L2

z − h̄Lz|λ, η >= (λ− η2 − h̄η). (4.43)

Similarly the norm of L−|λ, η > is

< λ, η|L+L−|λ, η >= (λ− η2 + h̄η). (4.44)

Thus in order for the space that contains the rotation group to be finite
dimensional we must require

(λ− η2
max − h̄ηmax) = 0 (4.45)
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for certain maximum η and

(λ− η2
min + h̄ηmin) = 0 (4.46)

for certain minimum η. Moreover due to Eq. (4.42)

ηmax = ηmin + kh̄, (4.47)

where k is a positive integer. Substituting Eq. (4.47) into Eq. (4.45)
we obtain

ηmin = −k
2
h̄. (4.48)

Similarly substituting Eq. (4.47) into Eq. (4.46) we obtain

ηmax =
k

2
h̄. (4.49)

Now substituting Eq. (4.48) into Eq. (4.46) we obtain

λ = h̄2

(
k2

4
+
k

2

)
=
k

2

(
k

2
+ 1

)
h̄2. (4.50)

We will from now on label the state |λ, η > by |l, lz > where

l ≡ k

2
(4.51)

and −k
2
≤ lz ≤ k

2
, and

L2|l, lz >= h̄2l(l + 1)|l, lz >
Lz|l, lz >= h̄lz|l, lz >
L+|l, lz >= h̄

√
l(l + 1)− lz(lz + 1)|l, lz + 1 >

= h̄
√

(l −m)(l +m+ 1)|l, lz + 1 >

L−|l, lz >= h̄
√
l(l + 1)− lz(lz − 1)|l, lz − 1 >

= h̄
√

(l +m)(l −m+ 1)|l, lz − 1 > . (4.52)

Thus the irreducible invariant spaces of the rotation group are labeled
by l which is generally referred as the angular momentum quantum
number. According to Eq. (4.51) l is either integer or half-integer.

67



4.3.2 Integer angular momentum

The l = integer irreducible invariant space of the rotation group is
spanned by the states |l,m > where l = integer and −l ≤ m ≤ l. It is
possible to find such states in the Hilbert space of a spinless particle.
Using the spherical coordinate

x = r sin θ cosφ

y = r sin θ sinφ

z = r cos θ, (4.53)

and L = x× h̄
i
∇ we obtain

L2 = −h̄2

[
1

sin2 θ

∂2

∂φ2
+

1

sin θ

∂

∂θ

(
sin θ

∂

∂θ

)]

Lx =
h̄

i

(
− sinφ

∂

∂θ
− cosφ cot θ

∂

∂φ

)

Ly =
h̄

i

(
cosφ

∂

∂θ
− sinφ cot θ

∂

∂φ

)

Lz =
h̄

i

∂

∂φ

L+ = h̄eiφ
(
∂

∂θ
+ i cot θ

∂

∂φ

)

L− = −h̄e−iφ
(
∂

∂θ
− i cot θ

∂

∂φ

)
. (4.54)

First we note that none of the angular momentum operator acts on the
radial coordinate. Thus

< x|l,m >= R(r)Ylm(θ, φ) (4.55)

where R(r) can be any function of r and Ylm(θ, φ) satisfies

−h̄2

[
1

sin2 θ

∂2

∂φ2
+

1

sin θ

∂

∂θ

(
sin θ

∂

∂θ

)]
Ylm(θ, φ)

= h̄2l(l + 1)Ylm(θ, φ)

h̄

i

∂

∂φ
Ylm(θ, φ) = h̄mYlm(θ, φ). (4.56)
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The solution of the above equation is the spherical harmonics2

Ylm(θ, φ) =

√√√√2l + 1

4π

(l −m)!

(l +m)!
(−1)meimφPlm(cos θ)

Plm(ξ) =
(−1)m(l +m)!

2ll!(l −m)!
(1− ξ2)−m/2

dl−m

dξl−m
(ξ2 − 1)l. (4.57)

The normalization is chosen so that∫
dθdφYl′m′(θ, φ)Ylm(θ, φ) = δll′δmm′ . (4.58)

4.3.3 Half-integer angular momentum

The smallest half-integer angular momentum is 1/2. In the following
we work out the matrices correspond to Lx, Ly and Lz in this space.
The two possible states are |1

2
, 1

2
> and |1

2
,−1

2
>. Thus

Lz → Sz =
h̄

2

(
1 0
0 −1

)
. (4.59)

Similarly

Lx → Sx =
1

2
(L+ + L−)→ h̄

2

(
0 1
1 0

)
, (4.60)

and

Ly → Sy =
1

2i
(L+ − L−)→ h̄

2

(
0 −i
i 0

)
. (4.61)

These are exactly the spin 1/2 matrices we learned in elementary quan-
tum mechanics.

For a particle with spin 1/2 the states are direct product of the
“orbital” and “spin” states, i.e.

|state >= |orbital > ⊗|spin > . (4.62)

The corresponding wavefunction is of the form

ψ(x;σ) = φ(x)χ(σ). (4.63)

2For details see, e.g., “Quantum Mechanics” by Merzbacher, 2nd edition, page
178-190
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Rotation acts simultaneously in the orbital and spin spaces. The gener-
ator of the orbital rotation is commonly denoted by L and the generator
of the spin rotation is commonly denoted by S. The generator of the
physical rotation is the sum

J = L⊗ I + I ⊗ S. (4.64)

In the above L⊗ I means that the operator acts on the product space,
however it only affect the orbital states. Similarly I ⊗ S means that it
only affect the spin state. In the literature Eq. (4.64) is abbreviated as
J = L + S. It is important to note that J satisfies the commutation
relation Eq. (4.36). Therefore everything we said between Eq. (4.36)
and Eq. (4.52) holds true for J.

It is of particular interest to note that

e−
i
h̄

2πn̂·S = −I, (4.65)

while for integer angular momentum representation

e−
i
h̄

2πn̂·L = I. (4.66)

It is thus important to remember that for particle with half-integer spin
rotation around an axis by 2π is not the identify.

4.4 Euler’s rotations

A rotation around an axis n̂ by χ can be achieved by the following
three steps. Let n̂ be characterized by (sin θ cosφ, sin θ sinφ, cos θ).
From the fixed reference frame (x, y, z) we shall generate two new
frames (x′, y′, z′) and (x′′, y′′, z′′). The frame (x′, y′, z′) is generated
from (x, y, z) by rotating φ around the z-axis. The frame (x′′, y′′, z′′)
is generated from (x′, y′, z′) by rotating θ around the y′ axis.3 Finally
we rotate around the z′′ axis by χ. The first two rotations achieve
in bringing z′′ to n̂, and the last rotation achieves the actual rotation
around n̂. Thus

Rn̂(χ) = Rz′′(χ)Ry′(θ)Rz(φ). (4.67)

3In the above the sense of rotation is always counterclockwise with the “right-
handed rule”.
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In the above the rotations are expressed in reference to new frames
(x′, y′, z′) and (x′′, y′′, z′′). How do we express them in reference to the
fixed axis (x′, y′, z′). First we prove that rotation around the y′ axis by
θ, i.e. Ry′(θ) can be expressed as rotation around the fixed axis as

Ry′(θ) = Rz(φ)Ry(θ)R
−1
z (φ). (4.68)

Proof. Let  a
′

b′

c′

 (4.69)

by the components of a vector in the (x′, y′, z′) frame. Rotation around
y′ by θ brings a

′

b′

c′

→
 cos θ 0 sin θ

0 1 0
− sin θ 0 cos θ


 a
′

b′

c′

 ≡ Ry(θ)

 a
′

b′

c′

 . (4.70)

However the components of a vector in the (x′, y′, z′) frame is related
the the components of the vector in the (x, y, z) frame by a

′

b′

c′

 =

 cosφ sinφ 0
− sinφ cosφ 0

0 0 1


 ab
c

 ≡ R−1
z (φ)

 ab
c

 . (4.71)

As the result when Eq. (4.70) is viewed in (x, y, z) we have

R−1
z (φ)

 ab
c

→ Ry(θ)R
−1
z (φ)

 ab
c

 , (4.72)

or  ab
c

→ Rz(φ)Ry(θ)R
−1
z (φ)

 ab
c

 , (4.73)

which is the meaning of Eq. (4.68).
Similarly we have

Rz′′(χ) = Ry′(θ)Rz(χ)R−1
y′ (θ). (4.74)
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Substituting Eq. (4.68) and Eq. (4.74) into Eq. (4.67) we obtain

Rn̂(χ) = Rz′′(χ)Ry′(θ)Rz(φ)

= Ry′(θ)Rz(χ)R−1
y′ (θ)Ry′(θ)Rz(φ)

= Ry′(θ)Rz(χ)Rz(φ)

= Rz(φ)Ry(θ)R
−1
z (φ)Rz(χ)Rz(φ)

= Rz(φ)Ry(θ)Rz(χ). (4.75)

In the above we have used the fact that Rz(χ)Rz(φ) = Rz(φ)Rz(χ).
This can be generalized to show that

e−
i
h̄
χn̂·J = e−

i
h̄
φJze−

i
h̄
θJye−

i
h̄
χJz . (4.76)

4.5 The Clebsch-Gordan Coefficient

Suppose we have two particles one in angular momentum state |j1,m1 >
and the other in angular momentum state |j2,m1 >, what is the angular
momentum state of the combined system? Since the two particle states
are the direct product of the single particle ones, i.e.,

|two particle >= |particle 1 > ⊗|particle2 > . (4.77)

As the result the operator that rotates the system around n̂ by angle θ
is

U = e−
i
h̄
θn̂·(J1⊗I)e−

i
h̄
θn̂·(I⊗J2). (4.78)

In the above J1⊗I/I⊗J2 acts on the two particle state but only affects
the state of particle 1/particle 2. Since J1⊗I and I⊗J2 act on different
particles they commute. As the result

U = e−
i
h̄
θn̂·(I⊗J1+J2⊗I). (4.79)

Therefore the total angular momentum operator of two particles is

J = J1 ⊗ I + I ⊗ J2, (4.80)

which is more commonly written as

J = J1 + J2. (4.81)
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The total space spanned by |j1,m1 > ⊗|j2,m2 > is (2j1 +1)(2j2 +1)
dimensional. In general |j1,m1 > ⊗|j2,m2 > is not an eigen state
of J2 and Jz. However since the direct product space is a invariant
space of J we can express such eigenstate as linear combination of
|j1,m1 > ⊗|j2,m2 >

|jm >=
j1∑

m1=−j1

j2∑
m2=−j2

< j1,m1; j2,m2|jm > |j1,m1; j2,m2 > . (4.82)

Here we have abbreviated |j1,m1 > ⊗|j2,m2 > by |j1,m1; j2,m2 >.
The linear combination coefficient is called the Clebsch-Gordan
coefficient. Since Jz|jm >= mh̄|j,m > and since (J1z +
J2z)|j1,m1; j2,m2 >= (m1 +m2)h̄|j1,m1; j2,m2 > we conclude that

< j1,m1; j2,m2|jm >= 0, if m 6= m1 +m2. (4.83)

But how many different |jm > multiplet4 can be formed in the direct
product space?

Since the maximum value of m1 +m2 is j1 + j2, so is the maximum
value of m. The j value corresponds to m = j1 + j2 is j = j1 + j2. In
the following we shall prove that the state

J2|j1, j1; j2, j2 >= h̄2(j1 + j2)(j1 + j2 + 1)|j1, j1; j2, j2 >

Jz|j1, j1; j2, j2 >= h̄(j1 + j2)|j1, j1; j2, j2 > . (4.84)

The second of the above equations is obvious hence we will focus on
the first one. Use the fact that

J2 = J2
1 + J2

2 + 2J1 · J2 = J2
1 + J2

2 + J+
1 J
−
2 + J−1 J

+
2 , (4.85)

and the fact that

J+
1 |j1, j1; j2, j2 >= J+

2 |j1, j1; j2, j2 >= 0, (4.86)

the first equation follows trivially. Thus

|j1 + j2, j1 + j2 >= |j1, j1; j2, j2 > . (4.87)

4The collection of {|j,m >;m = −j...+ j} is called a multiplet
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By successively applying J− = J−1 + J−2 to Eq. (4.87) we generate the
multiplet {|j1+j2,m >}. The dimension of this multiplet is 2(j1+j2)+1.
For example

J−|j1 + j2, j1 + j2 >= (J−1 + J−2 )|j1, j1; j2, j2 > . (4.88)

The righthand side of the above equation is
√

2(j1 + j2)|j1 + j2, j1 +

j2 − 1 > and the lefthand side of the above equation is
√

2j1|j1, j1 −
1; j2, j2 > +

√
2j2|j1, j1; j2, j2 − 1 >, thus

|j1 + j2, j1 + j2 − 1 > =

√
j1

j1 + j2

|j1, j1 − 1; j2, j2 >

+

√
j2

j1 + j2

|j1, j1; j2, j2 − 1 > . (4.89)

In the total space spanned by {|j1,m1; j2,m2 > there are only two
independent states can have m = j1 + j2 − 1. They are two different
linear combinations of |j1, j1 − 1; j2, j2 > and |j1, j1; j2, j2 − 1 >. The
state given by Eq. (4.89) already exhausts one of them. The other
one can be obtained by requiring the state to be orthogonal to that in
Eq. (4.89). The result is√

j2

j1 + j2

|j1, j1 − 1; j2, j2 > −
√

j1

j1 + j2

|j1, j1; j2, j2 − 1 > . (4.90)

It is simple to show that the above state is the eigen state of J2 and Jz
both with eigenvalues j1 + j2 − 1. Thus

|j1 + j2 − 1, j1 + j2 − 1 > =

√
j2

j1 + j2

|j1, j1 − 1; j2, j2 >

−
√

j1

j1 + j2

|j1, j1; j2, j2 − 1 > .(4.91)

We can now apply the lowering operator on Eq. (4.91) successively to
generate the new multiplet {|j1+j2−1,m > ,m = −(j1+j2−1)..., (j1+
j2−1)}. The dimension of the multiplet is 2(j1+j2−1)+1. By applying
the lowering operator once we generate the state |j1+j2−1, j1+j2−1 >.
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Now we have two out of the three possible independent states having
m = j1 + j2− 2. by orthogonalizing to the two states we get the states
|j1+j2−2, j1+j2−2 >. We repeat this process until the total dimension
(2j1 + 1)(2j2 + 1) is exhausted. The end result is that we can generate
multiplet with

|j1 − j2| ≤ j ≤ j1 + j2. (4.92)

Now we demonstrate that the sum of the dimension of these multiplet
is exactly (2j1 + 1)(2j2 + 1). Without loosing generality let us assume
j1 > j1. The total dimension of the generated multiplets is

j1+j2∑
j=j1−j2

(2j+ 1) = 2
(2j1)(2j1 + 1)

2
+ 2j2 + 1 = (2j1 + 1)(2j2 + 1). (4.93)

The above discussion also point out how to generate the Clebsch-
Gordan coefficient.

4.6 Selection rules

4.6.1 Scalar operators

As we shall discuss in later part of the course, when an new terms is
added to a Hamiltonian

H = H0 + δH, (4.94)

transition between the eigenstates of H0 will be induced. In elementary
quantum mechanics we have learned a rule (Fermi’s golden rule) that
the transition rate is given by

Wfi =
2π

h̄
| < f |δH|i > |2δ(Ef − Ei). (4.95)

In the above |i > and |f > are eigenstates of H0 with energy Ei and
Ef . Thus computing the matrix element < f |δH|i > is central to the
prediction of the transition rate.

If δH is invariant under a group G, and |i > and |f > belongs
to different irreducible invariant space of G, then < f |δH|i >= 0.
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Indeed due to the theorem we proved at the beginning of this section
δH|i > falls in an irreducible invariant subspace that carries the same
representation as the space where |i > belong. Two states in different
invariant subspace must have zero inner product.5

In the following we shall generalize the situation to include the case
where δH is not invariant under G but transforms in certain specified
fashion. For this discussion we shall concentrate on the rotation group
as the symmetry group.

4.6.2 Tensor operators, the Wigner-Eckart theo-
rem

Suppose there is a set of operators {Tkq} that transform like the mul-
tiplet |k, q > under rotation, i.e.

R+TkqR =
k∑

q′=−k
Rk
qq′Tkq′

R|k, q >=
k∑

q′=−k
Rk
qq′|kq′ >, (4.96)

then we say that Tkq is a spherical tensor operator of rank k. A neces-
sary condition for the above equation is that

[Jz, Tkq] = h̄qTkq

[J±, Tkq] = h̄
√

(k ∓ q)(k ± q + 1)Tkq±1. (4.97)

To prove the above equation we take

R = I − ε i
h̄
n̂ · J, (4.98)

and substitute into Eq. (4.96). We obtain

[n̂ · J, Tkq] =
k∑

q′=−k
< kq′|n̂ · J|kq > Tkq′ . (4.99)

5This is because irreducible invariant space divides the Hilbert space into disad-
jointing parts.

76



By taking n̂ = ẑ, x̂± iŷ we obtain Eq. (4.96).
The Wigner-Eckart Theorem. The matrix elements of tensor oper-

ators with respect to angular momentum eigenstates satisfy

< α′j′m′|Tkq|αjm >= M(α′, j′, α, j, k) < j,m; k, q|j′m′ > . (4.100)

In the above α and α′ denote other quantum numbers. Proof: by
applying J± = J±1 +J±2 to both side of Eq. (4.82) we obtain the following
recursion relation for the Clebsch-Gordan coefficient. The result is√

(j ∓m)(j ±m+ 1) < j1,m1; j2,m2|j,m± 1 >

=
√

(j1 ∓m1 + 1)(j1 ±m1) < j1,m1 ∓ 1; j2,m2|jm >

+
√

(j2 ∓m2 + 1)(j2 ±m2) < j1,m1; j2,m2 ∓ 1|jm > .(4.101)

Similarly using Eq. (4.96) we can compute the matrix element

< α′, j′,m′|[J±, Tkq|α, j,m >

= h̄
√

(k ∓ q)(k ± q + 1) < α′, j′,m′|Tkq±1|α, j,m > . (4.102)

On the other hand we can compute the lefthand side by acting J± to
the bra or the ket. The result is√

(j′ ±m′)(j′ ∓m′ + 1) < α′, j′,m′ ∓ 1|Tkq|α, j,m >

−
√

(j ∓m)(j ±m+ 1) < α′, j′,m′|Tkq|α, j,m± 1 >

=
√

(k ∓ q)(k ± q + 1) < α′, j′,m′|Tkq±1|α, j,m > . (4.103)

Comparing Eq. (4.101) with Eq. (4.103) we notice that the striking
similarity if we identify

j′ ↔ j

m′ ↔ m

j ↔ j1

m ↔ m1

k ↔ j2

q ↔ m2

< α′, j′,m′|Tkq|α, j,m > ↔< j1,m1; j2,m2|jm > . (4.104)

77



Thus Both recursion relations are of the form∑
j

aijxj = 0. (4.105)

Whenever we have ∑
j

aijxj =
∑
j

aijyj = 0 (4.106)

we can conclude that

xj = cyj (4.107)

where c is a universal proportionality factor. Thus we have

< α′, j′,m′|Tkq|α, j,m >= constant× < j,m; k, q|j′m′ > . (4.108)

A consequence of the Wigner-Eckart theorem is

1. < α′, j′,m′|Tkq|α, j,m >= 0 if m′ 6= m+ q.

2. < α′, j′,m′|Tkq|α, j,m >= 0 if j′ does not lie in the range |j−k| ≤
j′ ≤ j + k.

4.7 Time reversal

The discussion in this subsection follows closely that in chapter 4 of
“Modern Quantum Mechanics” by Sakurai.

Let us first look at classical mechanics. Let us imagine a particle
falling down under the influence of gravity. If we record the trajectory
of the particle and running the motion picture backward we will not
be able to tell which is the correct sequence. In one case we see the
particle moving accelerating downward and in the other we see the
particle decelerating upward. Both are in accord with Newton’s law.
More formally if x(t) is a solution to Newton’s equation

mẍ = −∇V (x), (4.109)

so will x(−t).
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Let us now look at quantum mechanics where Newton’s equation is
replaced by the Schrödinger equation:

ih̄
∂ψ(x, t)

∂t
=

[
− h̄2

2m
∇2 + V (x)

]
ψ(x, t). (4.110)

In this case suppose ψ(x, t) is a solution we can easily verify that
ψ(x,−t) is not a solution. This is due to the appearance of the first-
order time derivative. However ψ∗(x,−t) is a solution as you may
verify by complex-conjugation of Eq. (4.110). Thus we conjecture
that in quantum mechanics time reversal must have something to do
with complex conjugation. If at t = 0 the wavefunction is given by
ψ(x) =< x|ψ >, then the wavefunction for the corresponding time
reversed state is given by < x|ψ >∗ at t = 0.

Before we begin a systematic treatment of the time-reversal op-
erator, some general remarks on symmetry operations are in order.
Consider a symmetry operation

|α >→ |α′ > |β >→ |β′ > . (4.111)

One should require that the probability to be preserved, i.e.,

| < β′|α′ > |2 = | < β|α > |2. (4.112)

For symmetry operations we encounter so far such as rotation, transla-
tion, this is indeed the case. In addition for these symmetry transfor-
mation not only the modulus but also the phase of the inner products
are preserved, i.e.,

< β′|α′ >=< β|α > . (4.113)

Formally this so because the corresponding symmetry operator is uni-
tary, i.e.,

< β′|α′ >=< β|U+U |α >=< β|α > . (4.114)

However it turns out that time reversal preserves Eq. (4.112) by having

< α′|β′ >=< β|α >∗ . (4.115)

Definition. The transformation

|α >→ |α′ >= θ|α >, , |β >→ |β′ >= θ|β > (4.116)
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is said to be antiunitary if

< β′|α′ >=< β|α >∗

θ[c1|α > +c2|β >] = c∗1θ|α > +c∗2θ|β > . (4.117)

The corresponding operator θ is an antiunitary operator.
Under a fixed basis set |en > an antiunitary operator can be written

as
θ = UK, (4.118)

where K is the complex conjugation operator so that for |ψ >=∑
n cn|en >

K|ψ >= K[
∑
n

cn|en >] =
∑
n

c∗n|en > . (4.119)

The U in Eq. (4.118) is a unitary operator that transform the orthonor-
mal basis |en > to another orthonormal basis |e′n >. Here we emphasize
that the definition of K is in reference to a specific basis set. Now we
check that Eq. (4.115) is indeed satisfied. Let

|α >=
∑
n

αn|en >

|β >=
∑
n

βn|en >, (4.120)

acting Eq. (4.118) on these two states we have

|α′ >=
∑
n

α∗nU |en >

|β′ >=
∑
N

β∗nU |en > . (4.121)

As the result

< β′|α′ >=
∑
n,m

βmα
∗
n < em|U+U |en >=

∑
n

βnα
∗
n

= (
∑
n

β∗nαn)∗ =< β|α >∗ . (4.122)

We are now in position to present a formal theory of time reversal.
Let us denote the time reversal operator by Θ which is antiunitary.
We now deduce the fundamental property of Θ by looking at the time
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evolution of the time reversed state. Consider a physical system in
state |α > at t = 0. Then at a slightly later time t = δt the system is
found in (

I − i

h̄
δtH

)
|α > . (4.123)

Now let us apply the time reversal at t = 0 and then let the time-
reversed state evolve under the same Hamiltonian H, we then have at
δt (

I − i

h̄
δtH

)
Θ|α > . (4.124)

If the dynamics obeys symmetry under time reversal we expect the
preceding state to be the same as

Θ
(
I − i

h̄
(−δt)H

)
|α > . (4.125)

Thus

Θ
(
I +

i

h̄
δtH

)
|α >=

(
I − i

h̄
δtH

)
Θ|α >, (4.126)

or
−iHΘ|α >= ΘiH|α > ∀|α > . (4.127)

We now argue that Θ can not be unitary if the notion of time reversal is
to make sense. Suppose Θ were unitary. it would then be legitimate to
cancel the i’s in Eq. (4.127), and we would have the operator equation

−HΘ = ΘH or Θ−1HΘ = −H. (4.128)

Consider an energy eigenstate |n > with eigenenergy En. The corre-
sponding time-reversed state would have −En as the energy eigenvalue
because

HΘ|n >= −ΘH|n >= −EnΘ|n > . (4.129)

This is nonsensical even in the simplest case of a free particle. We know
that the energy spectrum of the free particle ranges from 0 to∞. there
is no state having energy lower than zero. Indeed since we expect the
momentum to change sign under time reversal and since the kinetic
energy is quadratic in momentum we expect

Θ−1 p
2

2m
Θ =

p2

2m
, (4.130)
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which clearly contradicts Eq. (4.128).
If Θ is antiunitary instead we have

ΘiH|α >= −iΘH|α >, (4.131)

then Eq. (4.127) implies that

ΘH = HΘ, (4.132)

which makes sense.
Now let us discuss the behavior of operators upon time reversal.

Let |α′ >= Θ|α > and |β′ >= Θ|β >, we shall prove that

< β|A|α >=< α′|ΘA+Θ−1|β′ > . (4.133)

Proof. Let |γ >= A+|β >, then < γ| =< β|A. Thus

< β|A|α > =< γ|α >=< γ′|α′ >∗=< α′|γ′ >
=< α′|Θ|γ >=< α′|ΘA+|β >
=< α′|ΘA+Θ−1Θ|β >
=< α′|ΘA+Θ−1|β′ > . (4.134)

For hermitian operators we get

< β|A|α >=< α′|ΘAΘ−1|β′ > . (4.135)

We say that observables are even or odd under time reversal according
to whether

ΘAΘ−1 = A (even) , or

ΘAΘ−1 = −A (odd). (4.136)

For such definite-T-parity operators and for |β >= |α > Eq. (4.135)
becomes

< α|A|α >=< α′|ΘAΘ−1|α′ >= ± < α′|A|α′ > . (4.137)

As an example let us look at the expectation value of the momentum
operator. Intuitively we expect P to be odd under time reversal, i.e.

ΘPΘ−1 = −P. (4.138)

82



This implies that

PΘ|k >= −ΘPΘ−1Θ|k >= −ΘP|k >= −h̄kΘ|k > . (4.139)

The above agrees with the notion that Θ|k > is the momentum eigen-
state with eigenvalue −h̄k. Thus we define

Θ|k >= | − k > . (4.140)

Eq. (4.140) fixes the representation of the time reversal operator under
the momentum eigenbasis.

Similarly for position operator we expect

ΘXΘ−1 = X, (4.141)

which suggest that
Θ|x >= |x > . (4.142)

This defines the representation of the time reversal under the position
eigenbasis.

It is interesting to see the consistency of Eq. (4.138) and Eq. (4.141)
with the commutation relation

[Xj, Pk] = ih̄δjk. (4.143)

The time reversed operators obey the following commutation relation

[ΘXjΘ
−1,ΘPkΘ

−1] = Θ[Xj, Pk]Θ
−1 = Θ(ih̄)Θ−1. (4.144)

According to Eq. (4.138) and Eq. (4.141) the first commutator is
−[Xj, Pk] = −ih̄δjk. Looking at the last term of Eq. (4.144) and realize
that Θ = UK hence changes i to −i, we get a consistent result. Since
the position operator is even while the momentum operator is odd un-
der time reversal, the orbital angular momentum operator L = X×P
obeys

ΘLΘ−1 = −L. (4.145)

Since the orbital angular momentum is part of the total angular mo-
mentum operator in Eq. (4.64) we require

ΘLΘ−1 = −L

ΘSΘ−1 = −S

ΘJΘ−1 = −J. (4.146)
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Under Eq. (4.142) the wavefunction of an state transform as follows.
Let |ψ >=

∫
d3xψ(x)|x >. Under time reversal

|ψ >→ Θ|ψ > =
∫
d3xΘψ(x)|x >=

∫
d3xψ∗(x)Θ|x >

=
∫
d3xψ∗(x)|x > . (4.147)

As the result the wavefunction corresponds to Θ|ψ > is ψ∗(x).
Since time reversal send the wavefunction to its complex conjugate

we have

Ylm(θ, φ) time reversal→ Y ∗lm(θ, φ) = (−1)mYl−m(θ, φ). (4.148)

Θ|l,m >= (−1)m|l,−m > . (4.149)

Finally we state an important theorem on time reversal.
Theorem. Suppose the Hamiltonian is invariant under time reversal

and the energy eigenstate |n > is non-degenerate; then the correspond-
ing eigenfunction is real up to a phase factor.6

Proof. First we note that

HΘ|n >= ΘH|n >= EnΘ|n > . (4.150)

Since this energy eigenstate is non-degenerate |n > and Θ|n > must be
the same state. Since the wavefunction of |n > is the complex conjugate
of the wavefunction for Θ|n > this means that

ψn(x) = eiθψ∗n(x). (4.151)

Up to this point we have only speak of the representation of the
time reversal operator in the Hilbert space of spinless particles. The
representation of Θ in the spin space is of interest. This is specially
true for the case of spin 1/2.

Let us find such representation using as the basis the eigenbasis of
Sz. Let |χ > be a spin state

|χ >= α|1/2 > +β| − 1/2 > . (4.152)

6By this we mean that the complex conjugate of the wavefunction is a phase
factor times the original one.
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The effect of the time reversal operator on |χ > is

Θ|χ >= UK|χ >= α∗U |1/2 > +β∗U | − 1/2 > . (4.153)

The question is what is the appropriate unitary transformation on the
basis.

The unitary transformation must be chosen so that if |η >= Θ|χ >

< η|S|η >= − < χ|S|χ > . (4.154)

Equivalently we require

(α β )U+~σU
(
α∗

β∗

)
= − (α∗ β∗ )~σ

(
α
β.

)
. (4.155)

Since the right hand side of the above equation is real we can rewrite
it as

−
[
(α∗ β∗ )~σ

(
α
β

)]∗
= −

[
(α β ) (x̂σx − ŷσy + ẑσz)

(
α∗

β∗

)]
.

(4.156)
we conclude that

U+~σU = −(x̂σx − ŷσy + ẑσz), (4.157)

or equivalently

U+σxU = −σx
U+σyU = σy

U+σzU = −σz. (4.158)

The operator that obviously work is

U = ξσy, (4.159)

where ξ is an arbitrary phase factor. Thus the representation of the
time reversal operator under the Sz eigenbasis is

Θ = ξσyK. (4.160)
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There is an important difference between the effect on Θ on the
states of a spinless particle and that of a spin 1/2 particle. For the
spinless case

Θ2|ψ >= Θ[
∫
d3xψ∗(x)|x >] =

∫
d3xψ(x)|x >= |ψ > . (4.161)

Thus

Θ2 = I. (4.162)

However for the spin state |χ >= α|1/2 > +β| − 1/2 > of a spin 1/2
particle we have

Θ2|χ > = Θ[α∗ξσy|1/2 > +β∗ξσy| − 1/2 >]

= Θ[α∗ξi| − 1/2 > +β∗ξ(−i)|1/2 >]

= ξ(α∗ξi)∗σy| − 1/2 > +ξ(β∗ξ(−i))∗σy|1/2 >
= −iα(−i)|1/2 > +iβi| − 1/2 >= −|χ > . (4.163)

Thus

Θ2 = −I. (4.164)

More generally we have

Θ2|integer j >= |integer j >

Θ2|half integer j >= −|half integer j > . (4.165)

Therefore the eigenvalue of Θ2 is given by (−1)2j. Eq. (4.160) can be
rewritten as

Θ = ξ′e−
i
h̄
πSyK (4.166)

where −iξ′ = ξ. Generalized to arbitrary j we have

Θ = ξ′e−
i
h̄
πJyK. (4.167)

4.8 The Kramers degeneracy

Let the Hamiltonian be time reversal invariant, i.e., ΘHΘ−1 = H. If
|n > is an energy eigenstate with eigenvalue En so does Θ|n >. The
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question is, are |n > and Θ|n > the same state? If the answer is yes
then

Θ|n >= eiφ|n > . (4.168)

Apply the time reversal operator again we obtain

Θ2|n >= e−iφeiφ|n >= |n > . (4.169)

But this relation is impossible for half-integer j systems, for which Θ2

is −1. So we are led to conclude that |n > and Θ|n > must represent
distinct states – that is, there must be a degeneracy. This implies, for
example, that for a system composed of an odd number of electrons
in external potential V (x), each energy level must be at least two fold
degenerate no matter how complicated V (x) may be.
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Chapter 5

Approximation methods for
discrete levels

5.1 A useful matrix theorem

Consider a matrix

H =
(
h V
V + H

)
. (5.1)

In the above h is a n × n matrix, and H is N × N and V is a n × N
matrix. Our goal is to solve the eigenvalue problem(

h V
V + H

)(
φ
χ

)
= E

(
φ
χ

)
. (5.2)

In Eq. (5.2) φ is a n × 1 column vector and χ is N × 1. Perform the
matrix multiplication explicitly Eq. (5.2) reduces to

(E − h)φ = V χ

(E −H)χ = V +φ. (5.3)

Eliminate the second of the above equation we get

χ = (E −H)−1V +φ. (5.4)

Here we have assumed the existence of the inverse (E−H)−1. Substitute
Eq. (5.2) back into the first of Eq. (5.3) we obtain

(E − h)φ = V (E −H)−1V +φ. (5.5)
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Thus solving the original eigenvalue problem withH a (n+N)×(n+N)
matrix is equivalent to find the eigenvalues of a n× n matrix given by

heff (E) = h+ V (E −H)−1V +. (5.6)

The eigen value E satisfies the equation

det [heff (E)] = 0. (5.7)

After obtaining the solution for E we can solve for the eigenvectors by
first find φ via

(E − heff )φ = 0. (5.8)

After obtaining φ we can solve for χ via Eq. (5.4).

5.2 The

non-degenerate Rayleigh-Schrödinger

perturbation theory

The non-degenerate Rayleigh-Schrödinger perturbation theory is based
on a special case of the above matrix theorem where n = 1.

The problem we are concerning with are the discrete energy levels
of a physical system whose Hamiltonian can be broken into two parts:

H = H0 + gV. (5.9)

In the above H0 is regarded as the unperturbed part, and gV the per-
turbation. g is a real parameter. It is introduced for bookkeeping pur-
poses. For g = 0 we have the unperturbed Hamiltonian and for g = 1
the perturbation acquires full strength. The eigenvalues and eigen-
functions of H are functions of g. Simple perturbation theory applies
when these functions can be expanded in powers of g. A perturbative
method is useful when only the first few terms of the expansion need
be considered.

The eigenvalue problem we wish to solve is

(H0 + gV )|ψn >= En|ψn > . (5.10)

90



We suppose that the problem

H0|φn >= εn|φn > (5.11)

has already been solved. Assuming first that no degeneracy has oc-
curred here, let us inquire what happens to the eigenvalues and eigen-
vectors as we allow g to grow continuously from zero to some finite
value. In this process the energy will change to

En = εn + ∆En. (5.12)

and the eigenstate changes to

|ψn >= |φn > +|χn > . (5.13)

In Eq. (5.13) we require that

< φn|χn >= 0, (5.14)

or equivalently
< φn|ψn >= 1. (5.15)

A symbolic representation of the Hamiltonian matrix in the space
spanned by |φn > and all other eigenstates of H0 is

H =
(
εn + Vnn gPV Q
gQV P QHQ

)
. (5.16)

In the above Vnn =< φn|V |φn >, P = |φn >< φn|, and Q ≡ I−|φn ><
φn|. It is trivial to show that the eigenenergy satisfies the equation

En − εn − Vnn− < φn|gPV Q
1

En −QHQ
gQV P |φn >= 0 (5.17)

The above equation can be simplified to

En − εn − Vnn− < φn|gV Q
1

En −H
gQV |φn >= 0 (5.18)

Thus

∆En = Vnn+ < φn|gV Q
1

En −QHQ
gQV |φn > . (5.19)
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As to (En −H)−1 in Eq. (5.19) we use the fact that

1

En −QHQ
=

1

En −QH0Q− gQV Q
=

1

En −QH0Q

+
1

En −QH0Q
gQV Q

1

En −QH0Q
+ ...

=
Q

En −H0

+
Q

En −H0

gV
Q

En −H0

+ ... (5.20)

Substitute Eq. (5.20) into Eq. (5.19) we obtain

∆En = gVnn+ < φn|gV
[

Q

En −H0

+
Q

En −H0

gV
Q

En −H0

+ ...
]
gV |φn > .

(5.21)

Insert complete set of states into Eq. (5.21) we obtain

∆En = gVnn + g2
∑
m6=n

VnmVmn
εn − εm + ∆En

+ ... (5.22)

Thus to the lowest order in g

∆En = gVnn. (5.23)

To O(g2) we have

∆En = gVnn + g2
∑
m6=n

VnmVmn
εn − εm

. (5.24)

To O(g3) we have

∆En = gVnn + g2
∑
m6=n

VnmVmn
εn − εm

+g3
∑

k,m6=n

VnmVmkVkn
(εn − εm)(εn − εk)

− g3
∑
m6=n

VnmVmnVnn
(εn − εm)2

.(5.25)

In this way we achieve an expansion of ∆En in powers of g. After
we obtain the eigenvalues, the eigen state are given by

|χn >=
1

En −QHQ
gQV P |φn > . (5.26)

92



Substitute Eq. (5.20) into the above we obtain

|χn >=
[

Q

En −H0

+
Q

En −H0

gV
Q

En −H0

+ ...
]
gV |φn > . (5.27)

Thus to O(g)

|ψn >= |φn > +g
∑
m6=n

Vmn
εn − εm

|φm > . (5.28)

To O(g2) we have

|ψn > = |φn > +g
∑
m6=n

Vmn
εn − εm

|φm > +g2
∑

m,k 6=n

VkmVmn
(εn − εk)(εn − εm)

|φk >

−g2
∑
m6=n

VnnVmn
(εn − εm)2

|φm > . (5.29)

In this way we achieved at an expansion of eigenstates in powers of g.

5.3 The degenerate Rayleigh-Schrödinger

perturbation theory

The degenerate perturbation theory we shall discuss here is a special
case of the matrix theorem at the beginning of this chapter where n > 1.

A symbolic representation of the Hamiltonian matrix in the space
spanned by n degenerate levels |φi > i = 1, ..., n and all other eigen-
states (not degenerate with |φi >’s) of H0 is

H =
(
ε+ PV P gPV Q
gQV P QHQ

)
. (5.30)

In the above ε is the degenerated eigenvalue, P =
∑n
i=1 |φi >< φi|,

and Q ≡ I − P . As discussed in the matrix theorem the effective
Hamiltonian we need to diagonalize it n × n dimensional and is given
by

Heff = ε+ gPV P + gPV Q
1

E −QHQ
gQV P, (5.31)
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where E is the undetermined eigenenergy. Using Eq. (5.20) we obtain

Heff = ε+ gPV P + gPV
[

Q

E −H0

+
Q

E −H0

gV
Q

E −H0

+ ...
]
gV P

(5.32)

Thus to O(g) we have

Heff = ε+ gPV P, (5.33)

which we need to diagonalize to obtain the new eigenvalues ε
(1)
j . Note

that at this order Heff is independent of E. To O(g2) we have

Heff = ε+ gPV P + g2PV
Q

ε−H0

V P, (5.34)

which we need to diagonalize to get ε
(2)
j . To O(g3) we have

Heff = ε+ gPV P + g2PV
Q

ε(1) −H0

V P

+g2PV
Q

ε−H0

V
Q

ε−H0

V P + ..., (5.35)

which we diagonalize to get ε
(3)
j ..etc.

As to the eigenstates we have to O(g) the eigensolutions of

(ε+ gPV P )|φ(1)
j >= 0, (5.36)

and

|χ(1)
j >= g

Q

ε−H0

V P |φ(1)
j > . (5.37)

(We note that |φ(1)
j > is also the eigenstate of H0. As the result |φ(1)

j >=

|φ(0)
j >. To O(g2) we get |φ(2)

j > by solving[
ε+ gPV P + g2PV

Q

ε−H0

V P
]
|φ(2)
j >= 0, (5.38)

and we get |χ(2)
j > by

|χ(2)
j >= g

Q

ε
(1)
j −H0

V P |φ(1)
j > +g2 Q

ε−H0

V
Q

ε−H0

V P |φ(0)
j > . (5.39)
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5.4 Berry’s theorem - an application of

the First-order peturbation theory.

Consider the Hamiltonian

H = Rxσx +Ryσy +Rzσz. (5.40)

As discussed before such Hamiltonian has two non-degenerate eigen-
states as long as |R| 6= 0. The Berry’s phase is given by

γ± =
∮
C
dR· < ψ±|

∇R

i
|ψ± > . (5.41)

Here |ψ± > is the instantaneous eigen state that are single valued
and differentiable over the contour C. Since < ψ±|ψ± >= 1 we
have < ∇Rψ±|ψ± > + < ψ±|∇Rψ± >= 0. Since < ∇Rψ±|ψ± >=<
ψ±|∇Rψ± >

∗ we conclude that < ψ±|∇Rψ± > is pure imaginary. As
the result

γ± = Im
[∮
C
dR· < ψ±|∇R|ψ± >

]
. (5.42)

Since the quantity < ψ±|∇Ri |ψ± > is sensitive to the phase conven-
tion of |ψ± > and ∇R× < ψ±|∇R|ψ± > is not, we apply the Stokes
theorem and convert Eq. (5.42) to a surface integral

γ± = Im
[∫ ∫

S
da · ∇× < ψ±|∇R|ψ± >

]
= εijkIm

[∫ ∫
S
dai∂j < ψ±|∂kψ± >

]
= εijkIm

[∫ ∫
S
dai < ∂jψ±|∂kψ± >

]
. (5.43)

Note that in order for the Stokes theorem to be applicable <
ψ±|∇R|ψ± > has to be well defined and differentiable on the surface
S that is bounded by C. Now let us compute < ∂jψ+|∂kψ+ > − <
∂kψ+|∂jψ+ >. By inserting complete set of states we have

< ∂jψ+|∂kψ+ > − < ∂kψ+|∂jψ+ >

=< ∂jψ+|ψ− >< ψ−|∂kψ+ > − < ∂kψ+|ψ− >< ψ−|∂jψ+ > .(5.44)
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Now let compute < ψ−|∂jψ+ > expresses the eigen states for R =
R0 + δR in terms of those of R0. This is achieved by the perturbation
theory since

H(R0 + δR) = H(R0) + δR · ∇RH. (5.45)

According to Eq. (5.28) we have up to a phase eiδθ and up to a
normalization factor N

|ψ+ >′ =
eiδθ

N
[|ψ+ > +

< ψ−|δR · ∇RH|ψ+ >

E− − E+

|ψ− >]

=
eiδθ

N
[|ψ+ > −< ψ−|δR · ∇RH|ψ+ >

2|R|
|ψ− >]. (5.46)

Here both δθ and N − 1 are of order |δR|. Thus we have

< ψ−|∂jψ+ >= −< ψ−|∂jH|ψ+ >

2|R|
=
< ψ−|σj|ψ+ >

2|R|
. (5.47)

As the result we have

< ∂jψ+|ψ− >< ψ−|∂kψ+ > − < ∂kψ+|ψ− >< ψ−|∂jψ+ >

=
1

4|R|2
[< ψ+|σj|ψ− >< ψ−|σk|ψ+ > − < ψ+|σk|ψ− >< ψ−|σj|ψ+ >]

=
1

4|R|2
∑
n=±

< ψ+|σj|ψn >< ψn|σk|ψ+ > − < ψ+|σk|ψn >< ψn|σj|ψ+ >

==
1

4|R|2
< ψ+|[σj, σk]|ψ+ >=

2i

4|R|2
εjkl < ψ+|σl|ψ+ >

=
i

2|R|2
εjklR̂l. (5.48)

Therefore

εijkIm[< ∂jψ±|∂kψ± >] =
1

4|R|2
εijkεjklR̂l =

R̂i

2|R|2
. (5.49)

Substitute the above into Eq. (6.64) we obtain

γ+ =
∫ ∫

S
dai

R̂i

2|R|2
=
∫ ∫

S
da · R̂

2|R|2
. (5.50)

The above is the magnetic flux produced by a monopole of strength
1/2 at the origin.
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5.5 The variational principle

The above perturbation approach based on an important assumption -
the existence of a small parameter that can be used to expand things. In
practice such small parameter rarely exists. The variational approach
is a non-perturbative method which does not rely on the presence of
small parameters.

The variational method is based on the following theorem. Let H
be the Hamiltonian whose ground state we try to find. Let |ψ > be
any normalized state, then

< ψ|H|ψ >≥ E0, (5.51)

where E0 is the ground state energy. Moreover the equality of Eq. (5.51)
holds if and only if |ψ > is the ground state.

Proof. Let {|en >} be the complete set of eigen states of H. Then
it follows that {|en >} forms a orthonormal set. Let us expand |ψ > in
this basis

|ψ >=
∑
n

cn|en > . (5.52)

The fact that |ψ > is normalized means that
∑
n |cn|2 = 1. The expec-

tation of H in |ψ > is given by

< ψ|H|ψ >=
∑
n

|cn|2En ≥ E0

∑
n

|cn|2 = E0. (5.53)

Moreover we can write

< ψ|H|ψ >= E0

∑
m;Em=E0

|cm|2 +
∑

n;En>E0

En|cn|2, (5.54)

Thus

< ψ|H|ψ > −E0 =
∑

n;En>E0

(En − E0)|cn|2. (5.55)

Since En − E0 > 0, the right hand side of the above equation is equal
to zero if and only if

cn = 0 ∀ En > E0. (5.56)
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As the result

|ψ >=
∑

m;Em=E0

cm|em >, (5.57)

which means that |ψ > is an ground state of H.1

The variational approach is entirely based on the above theorem. In
this approach we construct candidate ground state (ground state wave-
function) by appealing to intuition. To make the guess less restricted
we usually allow the state to depend on some parameters. For example
let |ψ(λ1, ..., λk) >. Usually the more variational parameters we allow
the more general is the guess. Due to the above theorem we find the
best set of variational parameters by minimizing the expectation value
of the Hamiltonian, i.e.

∂

∂λj

[
< ψ({λi})|H|ψ({λi}) >
< ψ({λi})|ψ({λi}) >

]
= 0. (5.58)

In some cases we can construct states that are orthogonal to the
ground state. This is mostly achieved via symmetry consideration. For
example, if we know the ground state have zero angular momentum we
can construct the lowest-energy non-zero angular momentum state by
applying the variational principle.

There is no recipe I can offer for constructing variational wavefunc-
tions. This is entirely done based on one’s physical intuition. Some of
the most important progresses in physics are achieved in this way. Ex-
amples include the Bardeen-Cooper-Schrieffer theory of superconduc-
tivity, and the Laughlin theory of the fractional quantized Hall effect.

5.6 The WKB approximation

In this subsection we will primarily be interested in the problem of a
particle moving in external potential V (x). The Hamiltonian is given
by

H =
h̄2

2m
∇2 + V (x). (5.59)

1In the case where the ground state is degenerate, |ψ > is just one of many
possible ground state.
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We shall develop an approximation scheme called the WKB approx-
imation. This approximation is valid when the potential varies slowly
with position.

We recall that the probability amplitude for a particle at position
x at t = 0 to propagate to position x′ at time t is given by

G(x′, t; x, 0) =
∫

y(t)=x′,y(0)=x
D[y(τ)]e

i
h̄
S, (5.60)

where

S[y(τ)] =
∫ t

0
dτ [

m

2
ẏ(τ)2 − V (y(τ))]. (5.61)

In fact if the particle has wavefunction ψ(x) at t = 0, then at time t
its wavefunction becomes

ψ(x, t) ∝
∫
d3x′G(x, t; x′, 0)ψ(x′). (5.62)

Let us consider the case where V (x) = 0 and ψ(x) = eik·x. The Feyn-
man propagator for this case is given by

G0(x′, t; x, 0) =
∫

y(t)=x′;y(0)=x
D[y(τ)]e

i
h̄

∫ t
0
dτ m

2
ẏ2

. (5.63)

For simplicity let us evaluate it for the one dimensional case.

G0(x′, t;x, 0) =
∫
y(t)=x′;y(0)=x

D[y(τ)]e
i
h̄

∫ t
0
dτ m

2
ẏ2

. (5.64)

Let us redefine the variable so that

y(τ) ≡ x+
x′ − x
t

τ + z(τ), (5.65)

so that

G0(x′, t;x, 0) =
∫
z(t)=0;y(0)=0

D[z(τ)]e
i
h̄

∫ t
0
dτ m

2
(ż+x′−x

t
)2

∼ e
i
h̄
tm

2
(x
′−x
t

)2

= ei
m
2h̄

(x′−x)2

t . (5.66)
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We note that the quantity m
2h̄

has the dimension time/length2 which is
the dimension of inverse diffusion constant. As the result we define

D ≡ h̄

m
, (5.67)

under which

G0(x′, t;x, 0) ∼ ei
(x−x′)2

2Dt . (5.68)

In general three dimensional case the above result becomes

G0(x′, t; x, 0) ∼ ei
|x−x′|2

2Dt . (5.69)

Using Eq. (5.69) we can prove that the plane wave is an stationary
state of the free-particle Hamiltonian.

Proof. Let us assume that at t = 0 the wavefunction is eik·x. Ac-
cording to Eq. (5.62) the wavefunction at time t is

ψ(x, t) ∼
∫
d3x′G0(x, t; x′, 0)eik·x

∼
∫
d3x′ei

|x−x′|2
2Dt eik·x

∼ eik·xe−i
Dtk2

2

= eik·xe−
i
h̄
h̄2k2

2m
t. (5.70)

We can project out the wavefunction with constant energy by perform-
ing the Fourier transform:∫ ∞

−∞
dte

i
h̄
Et
∫
d3x′G0(x, t; x′, 0)eik·x

′

=
∫
d3x′[

∫ ∞
−∞

dte
i
h̄
EtG0(x, t; x′, 0)]eik·x

′

≡
∫
d3x′G0(E; x,x′)eik·x

′
. (5.71)

In the above

G0(E; x,x′) =
∫ ∞
−∞

dte
i
h̄
EtG0(x, t; x′, 0)

∼
∫ ∞
−∞

dte
i
h̄
Etei

(x−x′)2
2Dt
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∼
∫ ∞
−∞

dt
∫
d3pe

i
h̄
Ete−i

Dtp2

2 eip·(x−x′)

= (2π)
∫
d3pδ(

E

h̄
− Dp2

2
)eip·(x−x′)

= 2πh̄
∫
d3pδ(E − h̄2p2

2m
)eip·(x−x′). (5.72)

(The above integral can be done to yield 8π2m
h̄

sin (
√

2mE|x−x′|)
|x−x′| .) As the

result∫
d3x′G0(E; x,x′)eik·x

′ ∼
∫
d3pδ(E − h̄2p2

2m
)eip·(x−x′)eik·x

′

= (2π)3
∫
d3pδ(E − h̄2p2

2m
)eip·xδ(p− k)

∼ eik·xδ(E − h̄2k2

2m
). (5.73)

Now let us compute G(x′, t; x, 0) in the presence of a smooth po-
tential. We recall that in general

G(x′, t; x, 0) =
∫

y(t)=x′,y(0)=x
D[y(τ)]e

i
h̄

∫ t
0
dτ [m

2
ẏ(τ)2−V (y(τ))]. (5.74)

In the case where V (x) is constant V the above reduces to

G(x′, t; x, 0) = e−
i
h̄
V t
∫

y(t)=x′,y(0)=x
D[y(τ)]e

i
h̄

∫ t
0
dτ [m

2
˙y(τ)

2
]

= e−
i
h̄
V tG0(x′, t; x, 0). (5.75)

Thus

G(E; x′,x) ∼
∫
d3pδ(E − V − h̄2p2

2m
)eip·(x−x′). (5.76)

To proceed further let us first consider the case of one dimension. Let
ε be a length scale over which V hardly changes, we split the distance
x′ − x into N pieces of length ε.

G(E;x′, x) ≈
N∏
i=1

∫
dpiδ(E − V (xi)−

h̄2p2
i

2m
)eipi(xi+1−xi)

∼ e
i
h̄

∫ x′
x
dy
√

2m(E−V (y)). (5.77)
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Thus

ψ(x) ∼ e
i
h̄

∫ x′
x
dy
√

2m(E−V (y))ψ(0). (5.78)

In three dimension we have to choose sum over all possible paths leading
from x to x′. Along a particular path parametrized by s the one-
dimensional result above applies. In that case along each path we have
a contribution

e
i
h̄

∫ st
s0
ds
√

2m(E−V (s))
. (5.79)

In this case further simplification of the result require the semiclas-
sical approximation where we replace the whole path integral by the
contribution from the classical path.

The above discussion suggests we write the eigenwavefunction as

ψ(x) = Ae
i
h̄
S(x), (5.80)

and expand S in powers of h̄. Substitute Eq. (5.80) into the Schródinger
equation we get

i

h̄
∇2S − 1

h̄2∇S · ∇S +
2m

h̄2 (E − V ) = 0. (5.81)

If we write

S = S0 +
h̄

i
S1 + (

h̄

i
)2S2 + ... (5.82)

and substitute the above into Eq. (5.81) and equating terms with equal
power of h̄ we obtain

∇S0 · ∇S0 = 2m(E − V )

2∇S0 · ∇S1 = −∇2S0

∇2S1 −∇S1 · ∇S1 = 2∇S2 · ∇S0. (5.83)

5.7 The time dependent perturbation

theory

5.8 Fermi’s golden rule

Suppose the Hamiltonian of a system is given by

H = H0 + V (t), (5.84)
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where H0 is a Hamiltonian whose eigenstates are familiar, and V (t)
is a weak perturbation. Due to the presence of V the eigenstates of
H0 ceases to be a steady state, i.e., as time evolve the perturbation
causes the system to make transition from one eigen state |i > of H0 to
another. In this subsection we calculate the rate at which this transition
occur.

To be more specific let us assume that the system is in |i > at t = 0.
The question is what is the probability per unit time that it will end
up in state |f >. According to

|ψ(t) >= Tt{e−
i
h̄

∫ t
0
dτ(H0+V (τ))}|i > . (5.85)

In the case where the external perturbation is weak we expand the time
evolution operator to the first order in V . The result is

Tt{e−
i
h̄

∫ t
0
dτ(H0+V (τ))} ≈ e−

i
h̄
H0t[I − i

h̄

∫ t

0
dτVH(τ)]

= e−
i
h̄
H0t − i

h̄

∫ t

0
dτe−

i
h̄

(t−τ)H0V (τ)e−
i
h̄
τH0 .

(5.86)

where
VH(τ) = e

i
h̄
H0τV (τ)e−

i
h̄
H0τ . (5.87)
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As the result

|ψ(t) >≈ e−
i
h̄
Eit|i > − i

h̄

∑
n

∫ t

0
dτe−

i
h̄
En(t−τ) < n|V (τ)|i > e−

i
h̄
Eiτ |n > .(5.88)

Thus the probability amplitude that after time t the system ends up in
e−

i
h̄
Ef t|f > is

Afi(t) ≈ −
i

h̄

∫ t

0
dτe

i
h̄

(Ef−Ei)τ < f |V (τ)|i > . (5.89)

Thus the transition probability is

Pfi(t) =
1

h̄2 |
∫ t

0
dτe

i
h̄

(Ef−Ei)τ < f |V (τ)|i > |2. (5.90)

The transition rate is defined as

Wfi(t) =
dPfi
dt

=
dA∗fi
dt

Afi + A∗fi
dAfi
dt

. (5.91)

Explicit differentiation gives

dAfi
dt
≈ − i

h̄
e
i
h̄

(Ef−Ei)t < f |V (t)|i > . (5.92)

As the result

Wfi(t) =
1

h̄2

∫ t

0
dτ
[
e
i
h̄

(Ef−Ei)(t−τ) < f |V (τ)|i >∗< f |V (t)|i > +c.c.
]

(5.93)
In the following we shall workout two special cases where i) V is

independent of t and ii) V (t) = cos(ωt)V .

5.8.1 V independent of t

In this case Eq. (5.93) becomes

Wfi(t) ≈ 1

h̄

e ih̄ (Ef−Ei)t − 1

i(Ef − Ei)
| < f |V |i > |2 + c.c.


=

4

h̄
cos

(
(Ef − Ei)t

2h̄

)
sin

(
(Ef−Ei)t

2h̄

)
(Ef − Ei)

| < f |V |i > |2.(5.94)
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However since

lim
ωt→∞

sin (ωt)

ω
= πδ(ω), (5.95)

Eq. (5.94) reduces to

Wfi(t) =
2π

h̄
| < f |V |i > |2δ(Ef − Ei). (5.96)

Eq. (5.96) is often referred to as “Fermi’s golden rule”.

5.8.2 V (t) is harmonic in t

If V (t) = V cos(ωt) Eq. (5.93) reduces to

Wfi(t) ≈ 1

h̄2

∫ t

0
dτ
[
e
i
h̄

(Ef−Ei)(t−τ) cos (ωt) cos (ωτ)| < f |V |i > |2 + c.c
]

=
2

h̄
cos (ωt)| < f |V |i > |2

sin
(

(h̄ω−Ef+Ei)t

2h̄

)
h̄ω − Ef + Ei

cos

(
(h̄ω + Ef − Ei)t

2h̄

)

+
2

h̄
cos (ωt)| < f |V |i > |2

sin
(

(h̄ω+Ef−Ei)t
2h̄

)
h̄ω + Ef − Ei

cos

(
(h̄ω − Ef + Ei)t

2h̄

)

→ π

h̄
cos2 (ωt)| < f |V |i > |2 [δ(h̄ω − Ef + Ei) + δ(h̄ω + Ef − Ei)] .

(5.97)

5.9 Beyond Fermi’s golden rule

We reiterate that given the time-dependent Hamiltonian

H = H0 + V (t), (5.98)

the states evolves according to

|ψ(t) >= Tt{e−
i
h̄

∫ t
0
dτ(H0+V (τ))}|i > . (5.99)

In the case where the external perturbation is weak we expand the time
evolution operator the result is

Tt{e−
i
h̄

∫ t
0
dτ(H0+V (τ))} = e−

i
h̄
H0tTte

− i
h̄

∫ t
0
dτVH(τ). (5.100)
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where

VH(τ) = e
i
h̄
H0τV (τ)e−

i
h̄
H0τ . (5.101)

In Eq. (5.100)

Tte
− i
h̄

∫ t
0
dτVH(τ) =

∑
n

(
− i
h̄

)n ∫ t

0
dτn...dτ1Tt[VH(τn)...VH(τ1)]. (5.102)

In previous section we kept none but the lowest order term of
Eq. (5.102). In this section we will include higher order terms. The
probability amplitude that a system starts off in |i > (an eigenstate of

H0) will end up in e−
i
h̄
H0t|f > is

Afi =< f |Tte−
i
h̄

∫ t
0
dτVH(τ)|i >

=
∑
n

(
− i
h̄

)n ∫ t

0
dτn...dτ1 < f |Tt[VH(τn)...VH(τ1)]|i > .

(5.103)

The way we evaluate < f |VH(τn)...VH(τ1)|i > is by inserting complete
set of states between each pair of VH . The most convenient such states
are the eigenstates of H0. In the following we concentrate on the case
t > 0 and assume that τn ≥ τn−1 ≥ ... ≥ τ1. Thus

< f |Tt[VH(τn)...VH(τ1)]|i > =
∑

α1,...,αn−1

n∏
j=1

< αj|VH(τj)|αj−1 >

=
∑

α1,...,αn−1

n∏
j=1

e
i
h̄

(Eαj−Eαj−1 )τj < αj|V |αj−1 > .

(5.104)

In the above we have defined |α0 >= |i > and |αn >= |f >. Next we
need to perform the integral

∫
τn>...>τ1

dτn...dτ1

n∏
j=1

e
i
h̄

(Eαj−Eαj−1 )τj

=
∫
dτn...dτ1

n∏
k=0

θ(τk+1 − τk)
n∏
j=1

e
i
h̄

(Eαj−Eαj−1 )τj . (5.105)
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Here we have defined τn+1 = t and τ0 = 0. Next we use the fact that

θ(t− t′) =
∫ dω

2πi

1

w − iη
eiω(t−t′). (5.106)

Thus ∫
dτn...dτ1

n∏
k=0

θ(τk+1 − τk)
n∏
j=1

e
i
h̄

(Eαj−Eαj−1 )τj

=
∫
dτn...dτ1

n∏
k=0

∫ dωk
2πi

1

ωk − iη
eiωk(τk+1−τk)

n∏
j=1

e
i
h̄

(Eαj−Eαj−1 )τj

=
∫ dωn

2πi
eiωnt

1

ωn − iη

n−1∏
k=0

∫
dωk

1

ωk − iη

×
n∏
j=1

δ

(
ωj − ωj−1 −

Eαj − Eαj−1

h̄

)

=
∫ dω

2πi
eiωt

(
1

ω − iη

)
n−1∏
k=0

(
1

ω − 1
h̄
(Eαk+1

− Eαk)− iη

)
.

(5.107)

The above ω integral can be done as a complex integral. Since t > 0
we close the ω contour in the upper half plane, hence enclosing all the
poles. The result is

(−h̄)n
n−1∏
k=0

(
1

Eαk+1
− Eαk

)
− (−h̄)n

n−1∑
l=0

e
i
h̄

(Eαl+1
−Eαl )t

1

Eαl+1
− Eαl

×
∏
k 6=l

(
1

Eαk+1
− Eαk − Eαl+1

+ Eαl

)
(5.108)

Thus

Afi(t) =
∑
n

(i)n
∑

α1,...,αn−1

{
n−1∏
k=0

(
< αk+1|V |αk >
Eαk+1

− Eαk

)
−

n−1∑
l=0

e
i
h̄

(Eαl+1
−Eαl )t

×< αl+1|V |αl >
Eαl+1

− Eαl

∏
k 6=l

(
< αk+1|V |αk >

Eαk+1
− Eαk − Eαl+1

+ Eαl

)
}. (5.109)
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For t < 0 we have

Afi(t) =
∑
n

(−i)n
∑

α1,...,αn−1

{
n−1∏
k=0

(
< αk+1|V |αk >
Eαk − Eαk+1

)
−

n−1∑
l=0

e
i
h̄

(Eαl+1
−Eαl )t

×< αl+1|V |αl >
Eαl − Eαl+1

∏
k 6=l

(
< αk+1|V |αk >

Eαk − Eαk+1
− Eαl + Eαl+1

)
}. (5.110)

We note that
Aif (−|t|) = [Afi(|t|)]∗ , (5.111)

i.e. when we reverse the time the transition amplitude becomes its
complex conjugate.

108



Chapter 6

Scattering theory

6.1 The scattering of a wave packet

This section follows closely the discussion in “Quantum mechanics” by
Merzbacher, page 219-249.

Let us concentrate on the scattering of a particle by a static poten-
tial. The Hamiltonian is given by

H =
p2

2µ
+ U = H0 + U. (6.1)

Here U is appreciably different from zero only within a sphere of radius
a around the origin. At t = 0 a particle is represented by a wave packet
given by

ψ(x, 0) =
1√
V

∑
k

φ(k)eik·(x−x0)

=
∫ d3k

(2π)3
φ(k)eik·(x−x0). (6.2)

where φ is non-zero within a narrow width ∆k around a mean mo-

mentum k0. For example if φ(k) = 1
(
√

2π∆k)3 e
− |k−k0|

2

2∆k2 , ψ(x, 0) =
1

(2π)3 e
ik0·(x−x0)e−

1
2

∆k2|x−x0|2 which is a wave packet of width 1/∆k
around x0. From now on we shall refer to the above as ψpk, i.e.

ψpk(k0,x− x0) =
1

(2π)3
eik0·(x−x0)e−

1
2

∆k2|x−x0|2 . (6.3)
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Let us assume that
k0 = −k0x̂0 (6.4)

so that the wave packet if unhindered in its motion would move freely
toward the origin. We also assume that |x0| is large enough so that
ψ(x, 0) lies entirely outside the range of the scatterer.

The dynamic problem to be solved is this: What is the shape of the
wave packet at a much later time, when the packet has hit the scatterer
and been eventually dispersed by it? In principle the answer can be
given easily if we expand ψ(x, 0) in terms if eigenfunctions, ψn(x), of
H. Indeed if we express

ψ(r, 0) =
∑
n

cnψn(x), (6.5)

then the wave packet at time t is

ψ(x, t) =
∑
n

cne
− i
h̄
Ent. (6.6)

Unfortunately Eq. (6.2) is an expansion in terms of plane waves,
the eigenfunctions of H0. In general the eigenfunctions of the full H
is complicated, in particular near x = 0. However Since U(r) = 0
for |r| > a these eigenfunctions must reduces to linear combination of
the solution of the free Schödinger equation. We shall show that for
|x| >> a the exact eigenfunctions reduces to the following form

ψ
(+)
k (x) =

1

(2π)3

(
eik·x + fk(x̂)

eik|x|

|x|

)
, (6.7)

and
ψ(x, 0) =

∫
d3kφ(k)e−ik·x0ψ

(+)
k (x) (6.8)

First we prove that for |x| >> a Eq. (6.8) reduces to the same
wavepacket as that in Eq. (6.2). Again let us choose φ(k) =

1
(
√

2π∆k)3 e
− |k−k0|

2

2∆k2 . Since φ(k) peaks around k0 therefore to an excel-

lent approximation we can replace k|x| in Eq. (6.8) by

k|x| ≈ k · k̂0|x|. (6.9)
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Using the above approximation and the assumption that fk varies little
within the range of ∆k and hence can be replaced by fk0 we obtain∫

d3kφ(k)e−ik·x0ψ
(+)
k (x)

≈ 1

(2π)3
eik0·(x−x0)e−

1
2

∆k2|x−x0|2 +
fk0(x̂)ei(k0|x|−k0·x0)

(2π)3|x|
×e−

1
2

∆k2||x|k̂0−x0|2

= ψpk(k0,x− x0) +
fk0(x̂)

|x|
ψpk(k0, |x|k̂0 − x0). (6.10)

We note that for x ≈ x0 we have, by Eq. (6.4), |x|k̂0 ≈ −x0, as the
result

ψpk(k0, |x|k̂0 − x0) ≈ ψpk(k0,−2x0) ≈ 0. (6.11)

At a later time t,

ψ(x, t) =
∫
d3ke−ik·x0−iωtψ

(+)
k (x), (6.12)

where

h̄ω =
h̄2k2

2µ
. (6.13)

Again since φ(k) sharply peaks around k0 we can approximate ω by

ω =
h̄k2

2µ
=
h̄|k0 + (k− k0)|2

2µ
≈ h̄(−k2

0 + 2k0 · k)

2µ
= −ω0 + v0 · k,

(6.14)
1 where

h̄ω0 =
h̄2k2

0

2µ
, v0 =

h̄k0

µ
. (6.16)

1The validity of this approximation is based on the assumption that

h̄

2µ
∆k2t << 1. (6.15)
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Substitute the above into Eq. (6.12) we obtain

ψ(x, t) =
∫
d3kφ(k)e−ik·(x0+v0t)+iω0tψ

(+)
k (x)

=
∫
d3kφ(k)e−ik·(x0+v0t)+iω0t[

1

(2π)3

(
eik·x + fk(x̂)

eik|x|

|x|

)
]

≈
∫
d3kφ(k)e−ik·(x0+v0t)+iω0t[

1

(2π)3

(
eik·x + fk0(x̂)

eik|x|

|x|

)
]

= eiω0tψpk(k0,x− v0t− x0)

+eiω0t
fk0(x̂)

|x|
ψpk(k0, k̂0[|x| − v0t+ |x0|])

(6.17)

The first term of Eq. (6.17) is appreciable when |x−v0t−x0| ≈ 0. The
solution of this is

x ≈ x0 + v0t (6.18)

, i.e. the trajectory of the center of the wavepacket. The second term
in Eq. (6.17) is appreciable when |x| − v0t + |x0| = 0. The solution of
that is

|x| = v0t− |x0|. (6.19)

Consequently for t < T0 = |x0|
v0

the second component is negligible. For
t > T0 Eq. (6.19) describes a outgoing spherical wave front

|x| = v0(t− T0). (6.20)

Except for the phase factor eiω0t, the first term on the right hand
side represents the initial wave packet displaced without the change of
shape, as if no scattering has occurred. The second term is a scattered
spherical wave packet representing a radially expanding replica of the
initial wave packet, and fk0(x̂) is called the scattering amplitude.

The probability flux ( h̄
m
Im[ψ∗∇ψ] is the probability current density)

of the particle incident at a detector placed out at a distance r >> a
from the scatterer and expand a solid angle dΩ is

Idet = r2dΩ|fk0(r̂)|2
∫ ∞
−∞

dt
h̄

m
Im[

ψ∗pk(k0, k̂0[r − v0t+ |x0|])
r
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× ∂

∂r

ψpk(k0, k̂0[r − v0t+ |x0|])
r

]

= dΩ|fk0(r̂)|2v0

∫ ∞
−∞
|ψpk(k0, k̂0[r − v0t+ |x0|])|2 (6.21)

The incident probability flux per unit area in the beam (r = −rk̂0)
is

Iin =
h̄

m

∫ ∞
∞

dtk̂0 · Im[ψ∗pk(k0,−rk̂0 − v0t− x0)∇ψpk(k0,−rk̂0 − v0t− x0)]

= v0

∫ ∞
∞

dt|ψpk(k0, k̂0[−r − v0t+ |x0|])|2. (6.22)

Since∫ ∞
∞

dt|ψpk(k0, k̂0[−r− v0t+ |x0|])|2 =
∫ ∞
−∞
|ψpk(k0, k̂0[r− v0t+ |x0|])|2,

(6.23)
we have

Idet = dΩIin
dσ

dΩ
, (6.24)

where the differential cross section is

dσ

dΩ
= |fk0(x̂)|2. (6.25)

As the result to compute the differential cross section we need to obtain
the scattering amplitude in Eq. (6.7).

6.2 Calculating ψ
(+)
k (x)

In this subsection we shall show that Eq. (6.7) is indeed the asymptotic
form of the eigensolution of(

− h̄
2

2µ
∇2 + V

)
ψ = Eψ. (6.26)

The above equation can be reduced to

(∇2 + k2)ψ = Uψ, (6.27)
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where

k2 =
2µE

h̄2 , U =
2µV

h̄2 . (6.28)

It is useful to view Uψ on the right hand side of Eq. (6.28) tem-
porarily as a given inhomogeneity, even though it contains the unknown
function ψ. Formally, then a particular “solution” of Eq. (6.28) is con-
veniently constructed in terms of the Greens function G(x− x′) which
the solution of equation

(∇2 + k2)G(r− r′) = δ(r− r′). (6.29)

As usual unique solution to Eq. (6.29) requires boundary condition.
We shall require, as our boundary condition that

G(x− x′)→ 0, as |x| → ∞. (6.30)

In the following we shall prove that the above boundary condition
amounts to adding a infinitesimal imaginary part to k, i.e. k → k + iη
in Eq. (6.29) so that

[∇2 + (k + iη)2]G+(r− r′) = δ(r− r′). (6.31)

We shall show that in the limit η → 0, G+ satisfies the appropriate
boundary condition. In that case

ψ
(+)
k (x) =

1

(2π)3
eik·x +

∫
d3x′G+(x− x′)U(x′)ψ

(+)
k (x′) (6.32)

will be a general solution of Eq. (6.28). In the above the first term is
the solution of the homogeneous equation

(∇2 + k2)ψ = 0. (6.33)

In order to solve Eq. (6.31) let us apply Fourier transform method.
Let us write

G+(r) =
∫ d3q

(2π)3
eiq·rG+(q), (6.34)

and

δ(r) =
∫ d3q

(2π)3
eiq·r. (6.35)
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Substitute Eq. (6.34) and Eq. (6.35) into Eq. (6.29) we obtain

[(k + iη)2 − q2]G+(q) = 1, (6.36)

or

G+(q) =
1

(k + iη)2 − q2
. (6.37)

Hence

G+(r) =
∫ d3q

(2π)3

eiq·r

(k + iη)2 − q2

= 2
∫ ∞

0

q2dq

(2π)2

sin (qr)

qr

1

(k + iη)2 − q2

=
∫ ∞

0

qdq

(2π)2

1

r

(
eiqr − e−iqr

i

)
1

(k + iη)2 − q2

=
∫ ∞
−∞

qdq

(2π)2

1

ir
eiqr

1

(k + iη)2 − q2

=
1

(2π)2r

d

dr

∫ ∞
−∞

dq
eiqr

q2 − (k + iη)2
. (6.38)

The integrand in Eq. (6.38) has poles at

q = ±(k + iη), (6.39)

in the complex q-plane. The integral can be easily evaluated by contour
integral and the result is

G+(r) = − 1

4π

ei(k+iη)r

r
. (6.40)

As promised before G+ vanishes as r → ∞. If we now substitute the
above into Eq. (6.32) we obtain, for any finite |x|

ψ
(+)
k (x) =

1

(2π)3
eik·x − 1

4π

∫
d3x′

eik|x−x′|

|x− x′|
U(x′)ψ

(+)
k (x′). (6.41)

Since U(x′) is non-zero only within a range |x′| ≤ a, we can perform
multipole expansion for |x| >> a to obtain

ψ
(+)
k (x) ≈ 1

(2π)3
eik·x − eik|x|

4π|x|

∫
d3x′e−ikx̂·x

′
U(x′)ψ

(+)
k (x′). (6.42)
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Eq. (6.42) is precisely of the form Eq. (6.7) with

fk(x̂) = −2π2
∫
d3x′e−ikx̂·x

′
U(x′)ψ

(+)
k (x′)

= −4π2µ

h̄2

∫
d3x′e−ikx̂·x

′
V (x′)ψ

(+)
k (x′). (6.43)

6.3 Approximate solution of fk

To calculate the scattering amplitude through Eq. (6.43) we need ψ
(+)
k

as an input. However to get ψ
(+)
k we need to solve the integral equation

Eq. (6.42). In following we introduce several well-known approximate
solution.

6.3.1 The Born approximation

In the limit that the scattering potential is weak we can replace the
ψ

(+)
k on the right hand side of Eq. (6.42) by 1

(2π)3 e
ik·x. In that case

ψ
(+)
k (x) ≈ 1

(2π)3
eik·x − 1

(2π)3

eik|x|

4π|x|

∫
d3x′e−ikx̂·x

′
U(x′)eik·x

′
. (6.44)

and hence

fk(x̂) = −2π2
∫
d3x′e−ikx̂·x

′
U(x′)

1

(2π)3
eik·x

′

= − 1

4π

∫
d3x′e−i(kx̂−k)·x′U(x′)

= − µ

2πh̄2

∫
d3x′e−i(kx̂−k)·x′V (x′). (6.45)

Since kx̂ is the final momentum and k is the initial one

∆k = kx̂− k, (6.46)

is the momentum transfer. Thus Born approximation predicts that

fk(x̂) = − µ

2πh̄2V (∆k), (6.47)
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where

V (∆k) ≡
∫
d3xe−i∆k·xV (x) (6.48)

is the Fourier transform of the scattering potential. In the case where
V (r) = V0θ(a− r), we have

V (∆k) =
a4πV0

∆k2
cos (∆ka). (6.49)

Thus

fk(x̂) = − aµV0

h̄2∆k2
cos (∆ka), (6.50)

We note that µV0

h̄2 has the dimension of length−2, thus we define the
scattering length

λ2 ≡ h̄2

µV0

, (6.51)

andEq. (6.50) becomes

fk(x̂) = −acos (∆ka)

(∆kλ)2
. (6.52)

Thus the differential cross section is

dσ

dΩ
= a2 cos2 (∆ka)

(∆kλ)4
. (6.53)

Similar calculation can be carried out for potential of the form

V (r) = V0
e−αr

αr
(6.54)

to obtain

fk(x̂) = −2µV0

h̄2α

1

∆k2 + α2
. (6.55)

The case of Coulomb scattering is given by α→ 0 and V0/α = q1q2. In
which case the above equation becomes

fk(x̂) = −2µ

h̄2

q1q2

∆k2
. (6.56)
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Note that

∆k = 2k sin

(
θ

2

)
, (6.57)

where θ is the scattering angle. Substitute the above into Eq. (6.56)
we obtain

fk(x̂) = −2µ

h̄2

q1q2

4k2 sin2
(
θ
2

) = − q1q2

4E2 sin2
(
θ
2

) , (6.58)

where E = h̄2k2

2µ
.

Hence according to the Born-approximation the differential cross
section for Coulomb scattering is given by

dσ

dΩ
=

q2
1q

2
2

16E2 sin2
(
θ
2

) , (6.59)

which is the classical Rutherford cross section. What is even more
amazing is that the above result agrees with the exact evaluation of the
quantum-mechanical Coulomb scattering cross section – one of many
coincidence peculiar to the Coulomb potential.

It is worth emphasize that in Born approximation the differential
cross section is independent on the sign of V0. The validity of the Born
approximation is given by the requirement that at x = 0 the first term
of Eq. (6.42) is much greater than the second, or,

1 >>
1

4π
|
∫
d3x′

eik|x
′|

|x′|
U(x′)eik·x

′|. (6.60)

For central potential this reduces to

1 >>
∫
dr′eikr

′
sin (kr′)U(r′) =

2µ

h̄2

∫
dr′eikr

′
sin (kr′)V (r′). (6.61)

Substitute for V Eq. (6.54) we obtain

1 >>
µ|V0|
kh̄2α

√√√√√log

√
1 +

4k2

α2

2

+

(
tan−1 2k

α

)2

. (6.62)
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If k/α << 1 this simplifies to

2µ|V0|
h̄2α2

<< 1. (6.63)

Using the fact that the range of force a = 1/α we may write Eq. (6.63)
as

|V0| <<
h̄2

2µ

1

a2
. (6.64)

The right hand side of Eq. (6.64) is the mean kinetic energy of a
particle that is confined within r ≤ a. If V0 is negative the existence
of bound state requires that |V0| ≥ h̄2

2µ
1
a2 . Broadly speaking, we may

therefore say that in the limit of low momentum the Born approxima-
tion is valid if the potential is too weak to produce a bound state. If
k/α >> 1 Eq. (6.63) simplifies to

µ|v0|
kh̄2α

log (2k/α) =
|V0|a
h̄v

log 2ka << 1. (6.65)

In the above v = h̄k
µ

is the velocity of the particle.

Generally, the Born approximation affords a quick estimate of scat-
tering cross section and is accurate for reasonably high energies in com-
parison with the interaction energy.

6.3.2 Beyond Born approximation

To obtain fk which is accurate to second order in V , we substitute
Eq. (6.44) for ψ

(+)
k on the right hand side of Eq. (6.32). Go to the third

order we substitute the second order result, ... etc. If we denote the
plane wave state by |k > then Born approximation amounts to

|ψ(+)
k >= |k > +

1

E −H0 + iε
V |k > . (6.66)

In the above we have used the fact that

(k + iη)2 = k2 + iε. (6.67)
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The next order approximation is given by

|ψ(+)
k >= |k > +

1

E −H0 + iε
V |k > +

1

E −H0 + iε
V

1

E −H0 + iε
V |k > .

(6.68)
In this way it is clear that the generalization to all order is given by

|ψ(+)
k >=

[
I +

1

E −H0 + iε
T
]
|k >

T = V + V
1

E −H0 + iε
V + V

1

E −H0 + iε
V

1

E −H0 + iε
V + ...

(6.69)

¿From Eq. (6.69) it is clear that T satisfies

T = V + V
1

E −H0 + iε
T. (6.70)

Combining Eq. (6.69) and Eq. (6.70) we have

V |ψ(+) > = V
[
I +

1

E −H0 + iε
T
]
|k >=

[
V + V

1

E −H0 + iε
T
]
|k >

= T |k > . (6.71)

Using Eq. (6.43) the scattering amplitude can now be written as

fk(x̂) = −(2π)3 4π2µ

h̄2 < kx̂|T |k > . (6.72)

In the above we have chosen the convention that < x|k >= 1
(2π)3 e

ik·x.
We note that since kx̂ is the momentum of the detected particle we can
rewrite the above equation in a more physically transparent way

f(kf ,ki) = −(2π)3 4π2µ

h̄2 < kf |T |ki >, (6.73)

where ki is the momentum of the incoming particle and kf is the mo-
mentum of the detected one.
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6.4 Optical theorem

There is a very famous relationship due to Bohr, Peirls and Placzek,
called the optical theorem. This theorem relates the imaginary part
of the forward scattering (i.e. kf = ki) amplitude to the total cross
section as follows;

Optical theorem

Im[f(k,k)] =
k

4π
σtot, (6.74)

where

σtot =
∫
dΩ

dσ

dΩ
. (6.75)

Proof. From Eqhty we have

Im[f(kf ,ki)] = −(2π)3 4π2µ

h̄2 Im[< k|T |k >]. (6.76)

We next evaluate Im[< k|T |k >]. From Eq. (6.71) we have

Im[< k|T |k >] = Im[< k|V |ψ(+)
k >]. (6.77)

Since

|ψ(+)
k >=

[
I +

1

E −H0 + iε
T
]
|k >= |k > +

1

E −H0 + iε
V |ψ(+)

k >,

(6.78)
we have

Im[< k|T |k >] = Im[
(
< ψ

(+)
k |− < ψ

(+)
k |V

1

E −H0 − iε

)
V |ψ(+)

k >].

(6.79)

Since < ψ
(+)
k |V |ψ

(+)
k > is real we have

Im[< k|T |k >] = −Im
[
< ψ

(+)
k |V

1

E −H0 − iε
V |ψ(+)

k >
]
. (6.80)

Now we use the well-known relation

1

E −H0 − iε
=

P

E −H0

+ iπδ(E −H0). (6.81)
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(here P projects out the zeros of E −H0) we have

Im[< k|T |k >] = −Im
[
< ψ

(+)
k |V

P

E −H0

V + iπV δ(E −H0)V |ψ(+)
k >

]
.

(6.82)
Since V P

E−H0
V is hermitian we have

Im[< k|T |k >] = −π < ψ
(+)
k |V δ(E −H0)V |ψ(+)

k >

= −π < k|Tδ(E −H0)T |k > . (6.83)

Let us now insert complete set of momentum states between T and
δ(E −H0) we obtain

Im[< k|T |k >] = −π(2π)3
∫
d3q < k|T |q > δ(E − h̄2q2

2µ
) < q|T |k >

= −π(2π)3
∫
dΩq

µk

h̄2 | < q|T |k > |2. (6.84)

Using Eq. (6.73) we obtain

Im[f(k,k)] =
k

4π

∫
dΩq|f(q,k)|2

=
k

4π

∫
dΩq

dσ

dΩ

=
k

4π
σtot. (6.85)

6.5 Scattering by central potentials - par-

tial wave analysis

Let us reiterate the two important equation obtained before

f(kf ,ki) = −(2π)3 4π2µ
h̄2 < kf |T |ki >,

and

T = V + V 1
E−H0+iε

V + ....
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In the case where the scattering potential is spherically symmetric
we have

U+TU = T, (6.86)

where U is the rotation operator. In that case it is advantageous to
express |ki > and |kf > in terms of the spherical harmonics so that we
can use the Wigner-Eckart theorem.

If we write

|k >=
∑
lm

Ck,lm|k, l,m >, (6.87)

then

f(kf ,ki) = −(2π)3 4π2µ

h̄2

∑
lm,l′m′

C∗kf ,l′m′Cki,lm < k, l′m′|T |k, lm > .

(6.88)
In Eq. (6.87)

|k, lm >≡
∫
dΩkY

∗
lm(Ωk)|k > . (6.89)

As the result

Ck,lm = Y ∗lm(k̂). (6.90)

Due to the Wigner Eckart theorem we have

< k, l′m′|T |k, lm >= Tl(k)δl′lδm′m, (6.91)

Eq. (6.88) simplifies to

f(kf ,ki) = −(2π)3 4π2µ

h̄2

∑
lm

C∗kf ,lmCki,lmTl(k)

= −(2π)3 4π2µ

h̄2

∑
lm

Ylm(k̂f )Y
∗
lm(k̂i)T (k). (6.92)

Use the fact that2

∑
lm

Y ∗lm(k̂i)Ylm(k̂f ) =
∑
l

2l + 1

4π
Pl(k̂i · k̂f ), (6.93)

2See, e.g., “Mathematical methods of physics”, 2nd edition, Mathews and
Walker, page 117.
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we simplifies Eq. (6.92) to

f(kf ,ki) =
∑
l

fl(k)(2l + 1)Pl(k̂i · k̂f ), (6.94)

where

fl(k) ≡ −8π4µ

h̄2 Tl(k). (6.95)

We note that Eq. (6.94) completely determines the angular distribution
of differential cross section, i.e.,

dσ

dΩ
= |

∑
l

fl(k)(2l + 1)Pl(k̂i · k̂f )|2. (6.96)

Thus by measuring dσ
dΩ

distribution one can deduce fl(k). By integrating
the above equation over the scattering angle we obtain

σtot =
∫
dΩ

dσ

dΩ
= 4π

∑
l

|fl(k)|2(2l + 1). (6.97)

At this point we should not have the impression that we have
solved the scattering problem. All we did was to find a good way to
parametrize the scattering amplitude. The quantity fl(k) in Eq. (6.95)
is still unknown.

To appreciate the physical significance of fl(k) let us study the

asymptotic behavior of ψ
(+)
k (x). Let us recall Eq. (6.7) namely,

ψ
(+)
k (x) = 1

(2π)3

(
eik·x + f(kx̂,k) e

ik|x|

|x|

)
.

By substituting Eq. (6.94) into the above we obtain

ψ
(+)
k (x) =

1

(2π)3

(
eik·x +

∑
l

fl(k)(2l + 1)Pl(k̂ · x̂)
eik|x|

|x|

)

=
1

(2π)3

(
eik|x|(k̂·x̂) +

∑
l

fl(k)(2l + 1)Pl(k̂ · x̂)
eik|x|

|x|

)
.

(6.98)
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Using the fact that3

1

(2π)3
eik|x|(k̂·x̂) =

1

(2π)3

∑
l

(2l + 1)jl(k|x|)Pl(k̂ · x̂), (6.99)

and the fact that as |x| → ∞4

jl(|x|)→
ei(k|x|−lπ/2)−e−i(k|x|−lπ/2)

2ik|x|
(6.100)

we have as |x| → ∞

ψ
(+)
k (x)→ 1

2ik(2π)3

∑
l

(2l+1)Pl(k̂·x̂)

(
[1 + 2ikfl(k)]

eik|x|

|x|
− e−i(k|x|−lπ)

|x|

)
.

(6.101)
The physics of scattering is now clear. When the scatterer is absent,
we can analyze the plane wave as sum of a spherically outgoing wave
∼ eik|x|

|x| and a spherically incoming wave ∼ − ei(k|x|−lπ)

|x| for each l. While
the scatterer leaves the incoming wave completely unaffected it changes
the coefficient of the outgoing wave as follows

1→ 1 + i2kfl(k) ≡ Sl(k). (6.102)

Due to probability conservation, that is whatever coming in the lth
angular momentum channel must go out, we expect the coefficient of
eik|x|/|x| to have the same magnitude as the coefficient of e−ik|x|/|x|.
This means

|Sl(k)| = 1, (6.103)

or
Sl(k) = e2iδl . (6.104)

We thus see that the only change in the wavefunction at a large distance
as a result of scattering is to change the phase of the outgoing wave.
Returning to fl we can write

fl =
e2iδl − 1

2ik
=
eiδl sin δl

k
. (6.105)

3See, e.g., “Modern quantum mechanics” Sakurai, page 398.
4See, e.g., “Modern quantum mechanics” Sakurai, page 398.
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Substitute the above in Eq. (6.94) we obtain

f(kf ,ki) =
∑
l

(2l + 1)eiδl sin δlPl(k̂i · k̂f ). (6.106)

Put the above into Eq. (6.97) we obtain

σtot =
∫
dΩ

dσ

dΩ
= 4π

∑
l

(2l + 1) sin2 δl. (6.107)
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Chapter 7

A few words on many-body
problems

Quantum mechanical problems are seldomly solvable. Some take the
point of view that with the help of modern computer this is no longer
a problem at least in principle. While this viewpoint might be true
for one-body problems it is fundamentally wrong for the many-body
problems. As we discussed in the example of quantum spin chains the
size of Hilbert space grows exponentially with the number of degrees
of freedom. 1 Because of this fast increase of the dimension of the
Hamiltonian, brute force diagonalization approach is in-tractable. In
fact unless some special condition exist many-body problems are in
general non-integrable.

7.1 Identical particles and their quantum

statistics

For reason that we will not step into here, in quantum mechanics
“identical particles” not only mean that the Hamiltonian operator
H(r1,p1; r2,p2; ...) is invariant under the permutation of particle la-
bels i.e.,

H(rP1,pP1; rP2,pP2; ...) = H(r1,p1; r2,p2; ...), (7.1)

1For the spin chain it grows as 2N
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but also require that the wavefunction has to be symmetric or antisym-
metric

ψ(rP1, ...rPN ;σP1, ..., σPN) = (±1)Pψ(r1, ..., rN ;σ1, ..., σN). (7.2)

Particles whose wavefunction satisfies the upper sign is call bosons while
those satisfying the lower sign are call fermions.

7.2 Many electron atoms

The success of hydrogen atom is largely responsible for the early ac-
ceptance of the quantum theory. From this point of view it is ironic
that except for the simplest atom, hydrogen, none of the other atoms
are exactly solved under the framework of quantum mechanics. The
next simplest atom in the periodic table is Helium. Helium has a nu-
cleus of charge 2e and two electrons. After redefining the coordinate
from x1,x2,X to R = mx1+mx2+MR

2m+M
, r1 = x1 − X, r2 = x2 − X, the

Hamiltonian read

H =

[
− 1

2µ
∇2

1 −
1

2µ
∇2

2 −
2e2

r1

− 2e2

r2

+
e2

|r1 − r2|

]
. (7.3)

(Here µ = Mm
m+M

.) The reason that Eq. (7.3) is difficult to solve is due to

the presence of electron-electron interaction, e2

|r1−r2| . In addition to the
above the helium problem has a new feature that we have not encounter
before, namely, it consists of two identical electrons.

Electrons are, of course, fermions. As the result we require

ψ(r1, r2;σ1, σ2) = −ψ(r1, r2;σ1, σ2). (7.4)

Since the the Hamiltonian in Eq. (7.3) does not depend on the spin
variables, we can separate ψ into the products of orbital and spin parts:

ψ(r1, r2;σ1, §2) = φ(r1, r2)χ(σ1, σ2). (7.5)

Since spin rotation commute with the Hamiltonian, we can choose the
eigen state to be that of the total S2 and Sz. For two electrons there
are only two possibilities.

i)S2χ(σ1, σ2) = 0(0 + 1)χ(σ1, σ2) or

ii)S2χ(σ1, σ2) = 1(1 + 1)χ(σ1, σ2). (7.6)

128



In the first case we say that the two atoms are in the singlet state, and
in the second we say that they are in the triplet state. The singlet state
consists of only one state

χs(σ1, σ2) = δσ1,1/2δσ2,−1/2 − δσ1,−1/2δσ2,1/2. (7.7)

The triplet consists of three states

χt+1(σ1, σ2) = δσ1,1/2δσ2,1/2

χt0(σ1, σ2) = δσ1,1/2δσ2,−1/2 + δσ1,−1/2δσ2,1/2

χt−1(σ1, σ2) = δσ1,−1/2δσ2,−1/2. (7.8)

While χs is antisymmetric under the exchange of σ1 and σ2, χt,m
are symmetric. As the result the Helium eigenfunctions are of the form

φsym(r1, r2)χs(σ1, σ2), or

φantsym(r1, r2)χt,m(σ1, σ2). (7.9)

Since Eq. (7.3) is rotational invariant we expect on symmetry
ground that φ(r1, r2) can be chosen to be the eigen state of L2 and
Lz. Here L = L1 + L2 is the total orbital angular momentum operator.
So clearly the eigenfunctions of helium can be labeled by |L,Lz, S, Sz >.
For example one choice of coordinate gives

φlm(r1, r2) = Ylm(r̂1)R(r1, r2, r̂1 · r̂2). (7.10)

Thus after the symmetry reduction, we have an effective 3-dimensional
(r1, r2, r̂1 · r̂2) problem. This is analogous to the hydrogen case where
the symmetry reduction deduce the problem to one dimensional (r).

There are many other possible choices of coordinate. Although they
all inevitably lead to a three dimensional problem, the complexity of
the actual equation can depend greatly on the choice of coordinate.
Recently Prof. Wu-Yi Hsiang of Berkeley has achieved a very elegant
choice of the coordinate. Hopefully this will lead to progress in the final
analytic solution of the helium atom.

So after a century of quantum mechanics, none but the simplest
atom in nature can be exactly solved.

In general in the presence of spin-orbit interaction L · S the eigen
states of a many-electron atom can be classified as |L, S, J, Jz > In the
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absence of rotational symmetry breaking, such as external magnetic
field, the energy is a function of L, S and J . The atomic symbol is
designed to be

2S+1LJ , (7.11)

where

L= 0 1 2 3 ...
S P D F ...

7.3 Delta-function interacting particles in

one-dimension

It turns out that in one space dimension if the interaction between
particles is delta-function like, i.e.

H = − h̄2

2m

∑
i

∂2
xi

+ V
∑
(i,j)

δ(xi − xj), (7.12)

the problem is exactly solvable. The technique used to solve these
problems is called Bethe ansatz. This technique is a bit to technical for
us to get into here but we can demonstrate part of this technique by
looking at its application to the two-particle case.

7.3.1 The two-particle case

In one space dimension two particles of momenta k1 and k2 collide with
each other must end up with two particles with momenta k1 and k2. The
momenta of the particle can switch, but that is the maximum allowed
change. This is a simple consequence of the energy and momentum
conservation:

k2
1 + k2

2 = k′21 + k′22
k1 + k2 = k′1 + k′2. (7.13)

Squaring the second equation and compare with the first, we obtain

k1k2 = k′1k
′
2. (7.14)
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Let k1k2 = k′1k
′
2 = C and k1 = C

r
, k2 = Cr, and k′1 = C

r′
, k′2 = Cr′.

Then the second of Eq. (7.13) implies

1

r
+ r =

1

r′
+ r′. (7.15)

We notice that

x+
1

x
= K (7.16)

has two solutions

x =
K ±

√
K2 − 4

2
. (7.17)

It is simple to see that the two roots are reciprocal of each other. Thus

r′ = r , or, r′ =
1

r
. (7.18)

Thus

k′1 = k1; k′2 = k2, or

k′1 = k2; k′2 = k1. (7.19)

The second thing we should get familiar with is the two-particle
scattering problem, Let us assume k1 > k2 and imagine originally
x1 < x2. The incoming 2-particle wavefunctions is ei(k1x1+k2x2). The
reflected wavefunction is then Rei(k2x1+k1x2) in x1 < x2. The trans-
mitted wavefunction sits in the configuration space x1 > x2 and the
wavefunction is Tei(k1x1+k2x2). Thus this scattering state solution read

Ψscatt,1(x1, x2) = ei(k1x1+k2x2) +Rei(k2x1+k1x2) ;x1 < x2

= Tei(k1x1+k2x2) ;x1 > x2, (7.20)

where

R = − 1

1 + iz

T =
iz

1 + iz

z =
k2 − k1

c
. (7.21)
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In the above

c =
mV

h̄2 . (7.22)

In addition to Eq. (7.20) there is another scattering state solution: i.e.
in x1 > x2 the momentum of the first/second particle is k2/k1. The
reflected wave in x1 > x2 is R′ei(k1x1+k2x2), and the transmitted wave in
x1 < x2 is T ′ei(k2x1+k1x2). Thus

Ψscatt,2(x1, x2) = ei(k2x1+k1x2) +Rei(k1x1+k2x2) ;x1 > x2

= Tei(k2x1+k1x2) ;x1 < x2. (7.23)

We note that

Ψscatt,2(x1, x2) = Ψscatt,1(x2, x1). (7.24)

Since Ψscatt,1 and Ψscatt,2 have the same energy, the eigen solution is a
linear combination of them

Ψ(x1, x2) = Ψscatt,1(x1, x2) + AΨscatt,2(x1, x2). (7.25)

Thus

Ψ(x1, x2) = {ei(k1x1+k2x2) +Rei(k2x1+k1x2)}
+A{Tei(k2x1+k1x2)} ;x1 < x2

= {Tei(k1x1+k2x2)}+ A{ei(k2x1+k1x2)

+Rei(k1x1+k2x2)} ;x1 > x2

(7.26)

7.3.2 Two Bosons

The symmetry on the bosonic wavefunction requires

Ψ(x1, x2) = Ψ(x2, x1), (7.27)

which implies

A = 1. (7.28)
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As the result,

Ψ(x1, x2) = ei(k1x1+k2x2) + (R + T )ei(k2x1+k1x2) ;x1 < x2

= (R + T )ei(k1x1+k2x2) + ei(k2x1+k1x2) ;x1 > x2,

(7.29)

where

R + T = −1− iz
1 + iz

= ei2φ, (7.30)

where

tan−1(2φ) = − 2z

1− z2
. (7.31)

or
φ = −tan−1z. (7.32)

Thus we have

Ψ(x1, x2) = ei(k1x1+k2x2) + eiθei(k2x1+k1x2) ;x1 < x2

= eiθei(k1x1+k2x2) + ei(k2x1+k1x2) ;x1 > x2

θ = 2 tan−1(
k1 − k2

c
), (7.33)

where k1 > k2 and |tan−1x| ≤ π
2
.

In order to quantize the allowed momenta we impose the periodic
boundary condition. Let L be the dimension of the system and let
x1 < x2. The periodic boundary condition requires that

ei(k1x1+k2x2) + eiθei(k2x1+k1x2) = eiθei(k1(x1+L)+k2x2) + ei(k2(x1+L)+k1x2)

.(7.34)

Similarly

ei(k1x1+k2(x2+L)) + eiθei(k2x1+k1(x2+L)) = eiθei(k1x1+k2x2) + ei(k2x1+k1x2).

(7.35)

These equation requires

eik1L = e−iθ = e−2i tan−1(
k1−k2
c

)

eik2L = eiθ = e2i tan−1(
k1−k2
c

), (7.36)

and the eigen energy is

E =
h̄2

2m
(k2

1 + k2
2). (7.37)
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7.3.3 Two fermions

For two fermions if the spin wavefunction is a singlet then the orbital
wavefunction is symmetric. In that case the orbital wavefunction is the
same as that of two bosons. In the case where the spin wavefunction
is a triplet, the orbital wavefunction has to be antisymmetric. In that
case A in Eq. (7.25) is

A = −1. (7.38)

, and

Ψ(x1, x2) = ei(k1x1+k2x2) + (R− T )ei(k2x1+k1x2) ;x1 < x2

= (T −R)ei(k1x1+k2x2) − ei(k2x1+k1x2) ;x1 > x2,

(7.39)

where

T −R =
1 + iz

1 + iz
= 1. (7.40)

Thus we have

Ψ(x1, x2) = ei(k1x1+k2x2) − ei(k2x1+k1x2) ;x1 < x2

= ei(k1x1+k2x2) − ei(k2x1+k1x2) ;x1 > x2. (7.41)

As the result

Ψ(x1, x2) = det
(
eik1x1 eik1x2

eik2x1 eik2x2

)
, (7.42)

the solution of the free-fermion problem. This is expected because for
antisymmetric orbital wavefunction (which vanishes when two particle
coincide) delta-function interaction is invisible.
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