
221B Lecture Notes
Many-Body Problems II

Molecular Physics

1 Molecules

In this lecture note, we discuss molecules. I cannot go into much details
given I myself am not familiar enough with chemistry. But at least the
notion of chemical valence bonds which chemists had developed before the
dawn of quantum mechanics is seen to emerge from the basic principles of
quantum mechanics as an approximate concept. This point is certainly worth
discussing.

1.1 Born–Oppenheimer Approximation

At the heart of most quantum-mechanical treatments of molecules is the
Born–Oppenheimer Approximation. The discussion begins with an order-
of-magnitude estimate of the time scales involved in various motions in a
molecule. It turns out that the heaviness of nuclei compared to the electron
mp/m ' 2000 greatly helps us in developing an approximate treatment.

Imagine a diatomic molecule held together at a distance R between two
atoms. We know typical orders of magntiude for exciting an electron in
individual atmos:

εelec ∼
e2

a0

= α2mc2, (1)

where m is the mass of the electron and α ' 1/137 is the fine-structure
constant. Here and below, we are concerned with outer shell electrons and
hence most of the nuclear charge is screened by inner shell electrons. We
regard the effective Z ∼ O(1). The typical velocity of the electron is αc, or
the time scale for the electronic motion

telec ∼
a0

αc
=

h̄

α2mc2
. (2)

Now let us estimate the (almost) harmonic interatomic potential which
stabilizes the distance between two atoms:

V (R) ' 1

2
Mω2(R−R0)

2. (3)
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We do not distinguish the nuclear mass M of two different atoms for the pur-
pose of our order-of-magnitude estimates. We know that the stable distance
between atoms R0 is of the order of an Ångstrom, which is of the order of the
Bohr radius a0 = h̄2/me2 = h̄c/(αmc2). When R approaches zero, electron
wave functions of two atoms would significantly overlap and it is clear that
it would cause disruption in electronic energies at the order of magnitude of
Eq. (1). Therefore,

V (0) ' 1

2
Mω2R2

0 ∼ εelec, (4)

and hence we find

εvib = h̄ω ∼ h̄

(
εelec

MR2
0

)1/2

∼ h̄

(
Z2α2mc2

Mh̄2c2/(α2(mc2)2)

)1/2

= Zα2mc2
(

m

M

)1/2

∼ εelec

(
m

Z2M

)1/2

(5)

e Therefore the vibrational energy of atoms inside a molecule is suppressed by
a factor of (m/Z2M)1/2 = 10−4–0.02 and is much smaller than the electronic
energies. The time scale of the vibrational motion is

trot ∼
1

ω
∼ h̄

Zα2mc2

(
Z2M

m

)1/2

(6)

which is much slower that the electronic motion Eq. (2).
Finally rotational energies are given by

εrot =
h̄2

MR2
0

' (αmc2)2

Mc2
∼ εelec

m

Z2M
. (7)

Therefore rotational energies are further down by another factor of (m/Z2M)1/2

relative to the vibrational energies. The time scale for the rotation is

trot '
MR2

0

h̄
∼ Mh̄2c2

(αmc2)h̄
=

h̄

Zα2mc2

ZM

m
(8)

1.2 Hydrogen Molecule

Let us start with the simplest molecule we know of, the hydrogen molecule
H2. The way we discuss it is along the line of the original work by Heitler
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and London, where you use atomic orbitals of electrons attached to each of
the protons.

The Hamiltonian of the sytem is

H =
~p2

A

2M
+

~p2
B

2M
+

e2

rAB

+ He (9)

with

He =
~p2

1

2m
+

~p2
2

2m
− e2

r1A

− e2

r1B

− e2

r2A

− e2

r2B

+
e2

r12

(10)

Within the spirit of the Born–Oppenheimer approximation, we fix the dis-
tance between two protons for most of the discussions, evaluate the energy
He as a function of the distance rAB, and discuss the equilibrium distance
as well as the vibrational excitation levels together with the remaining three
terms in H.

The idea by Heitler–London is very simple. You start with the ground-
state 1s wave functions for electrons attached to each of the proton. Let me
write them as u1A, u2B, etc, which means that the electron 1 (or 2) is in the
1s state associated with the proton A (or B). The wave function of course
consists of two electrons, and we put one electron for each proton. Therefore
two possible wave functions are

N±(uA(~x1)uB(~x2)± uB(~x1)uA(~x2)) (11)

The wave function uA(~x) = (Za0)
−3/22e−|~x−~xA|/Za0 1√

4π
depends on the dis-

tance between the electron and the proton A, and similarly for wave function
uB(~x) for the proton B, both for 1s states. The factor N± is there to nor-
malize the wave function, and is different depending on the relative sign as
we will see later.

On top of assiging each electron to one of the protons, we also need to
specify the spins of the electrons. In order to do so, we recall Fermi statistics
and make sure that the whole wave function is anti-symmetric under the
exchange of two electrons. Therefore allowed wave functions are

N+(uA(~x1)uB(~x2) + uB(~x1)uA(~x2))
1√
2
(| ↑↓〉 − | ↓↑〉) (12)

for S = 0 and

N−(uA(~x1)uB(~x2)− uB(~x1)uA(~x2))| ↑↑〉

N−(uA(~x1)uB(~x2)− uB(~x1)uA(~x2))
1√
2
(| ↑↓〉+ | ↓↑〉) (13)

N−(uA(~x1)uB(~x2)− uB(~x1)uA(~x2))| ↓↓〉
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for S = 1 spin wave function.
Then we evaluate the energy for fixed rAB. First of all, the normalization

factors N± need to be fixed

N−2
± =

∫
d~x1d~x2(uA(~x1)uB(~x2)± uB(~x1)uA(~x2))

2

= 2± 2
∫

d~x1uA(~x1)uB(~x1)
∫

d~x2uA(~x2)uB(~x2) = 2± 2∆2, (14)

where

∆ = e−D
(
1 + D +

1

3
D2
)

, D =
rAB

a0

. (15)

Once we know the normalization of the wave function, we can calculate
the expectation value of the electron Hamiltonian He Eq. (10). For the term
without the exchange,∫

d~x1d~x2u
2
A(~x1)u

2
B(~x2)

(
2E1s −

e2

r2A

− e2

r2B

+
e2

r12

)
= 2E1s + 2J + J ′, (16)

where we used the eigenequation for 1s states, and

J =
∫

d~xiu
2
A(~xi)

−e2

riB

=
e2

a0

[
− 1

D
+ e−2D

(
1 +

1

D

)]
, (17)

J ′ =
∫

d~x1d~x2u
2
A(~x1)u

2
B(~x2)

e2

r12

=
e2

a0

[
1

D
− e−2D

(
1

D
+

11

8
+

3

4
D +

1

6
D2
)]

. (18)

The exchange integral is more complicated,∫
d~x1d~x2uA(~x1)uB(~x2)uB(~x1)uA(~x2)

(
2E1s −

e2

r2A

− e2

r2B

+
e2

r12

)
= 2∆2E1s + 2∆K + K ′, (19)

with

K =
∫

d~xiuA(~xi)uB(~xi)
−e2

riB

= −e2

a0

e−D(1 + D), (20)

K ′ =
∫

d~x1d~x2uA(~x1)uB(~x2)uB(~x1)uA(~x2)
e2

r12

=
e2

5a0

[
−e−2D

(
−25

8
+

23

4
D + 3D2 +

1

3
D3
)

+
6

D

{
∆2(γ + log D) + ∆′2Ei(−4D)− 2∆∆′Ei(−2D)

}]
. (21)
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Figure 1: The energy of two electrons calculated using the perturbation
theory for both symmetric and anti-symmetric spatial wavefunctions. The
horizontal axis is the distance between two protons in the unit of Bohr radius
a0, and vertical axis total energy in the unit of e2/a0.

The constant γ = 0.5772 · · · is Euler’s constant, and

∆′ = eD
(
1−D +

1

3
D2
)

. (22)

The integral using the exponential integral function

Ei(z) = −
∫ ∞

−z
e−t dt

t
(23)

is due to Sugiura. Putting all the contributions together, we find the effective
potential between two protons to be

Veff (rAB) ≡ 〈He〉± +
e2

rAB

= 2E1s +
e2

rAB

+
2J + J ′ ± 2∆K ±K ′

1±∆2
. (24)

Fig. 1 plots this effective potential as a function of rAB for both signs. The
upper curve is for the anti-symmetric spatial wave function (or S = 1) while
the lower curve for the symmetric spatial wave function (or S = 0).

It is clear from the plot that the anti-symmetric spatial wave function
does not lead to a bound state of two atoms, while the symmetric one does.
This simple treatment gives the equilibrium distance between two atoms to be
0.80Å, while the experimental value is 0.740Å. The dissociation energy of the
molecule into two hydrogen atoms is 3.14 eV from this calculation, while the
actual value is 4.72 eV. The vibrational frequency for protons is 4800 cm−1

from this calculation while it is 4317.9 cm−1 from data. (All numbers from
Pauling–Wilson.) Clearly this wave function is the zeroth order trial wave
function which needs to be improved by further variation.
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The primary reason why the symmetric one binds while the anti-symmetric
one doesn’t is in their kinetic energies. The symmetric one has slower spatial
variation than the anti-symmetric one (which has to vanish when ~x1 = ~x2)
and has a larger kinetic energy (because it is basically the derivative). (I
thank Albert and Tony to clarify this point to me.) The potential energy is
actually lower for the anti-symmetric one because the anti-symmetry min-
imizes the electron-electron repulsion. But the difference in the kinetic en-
ergies wins over the difference in the potential energies and the symmetric
one binds. Given the above integrals, it is easy to verify these statements
quantitatively.

Simple improvement by varying Z in the trial wave function improves the
agreement with data, bringing the dissociation energy to 3.76 eV, but still
not quite there. The effective Z comes out as 1.166 (anti-screened!). The
anti-screening makes sense because the electron “sees” both protons at the
equilibrium distance. The equilibrium distance is improved to 0.76Å. The
variational wave function had been further improved by including the ionic
term (uA(~x1)uA(~x2) where both electrons are attached to only either of the
protons) by Weinbaum and correlations which depend on the interelectronic
distance r12 by James and Coolidge. The latter gives the dissociation energy
of 4.722 eV, the internuclear separataion of 0.74Å (cf. the data 4.2 eV and
0.7395Å, respectively), in good agreement with data.

1.3 Valence Bonds

The important lesson out of the example H2 is the notion of the valence
bonds. We learn this concept a lot in chemistry classes as an empirical rule
to build up molecules, and I never understood it. (But I’m quite impressed
that chemists had all figured this out back in 19th century without knowing
quantum mechanics!) The idea based on the atomic orbital method, used
here for the hydrogen molecule, is to put two electrons into the atomic orbitals
for two nuclei in the symmetric spatial combination, as the zeroth order
approximation to describe the electron wave function. Unlike the hydrogen
molecule, two nuclei can be different, and the electrons may occupy different
atomic orbitals for different nuclei. But the starting point is the same:

N+(uA(~x1)uB(~x2) + uB(~x1)uA(~x2))
1√
2
(| ↑↓〉 − | ↓↑〉). (25)
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Because two electrons have the opposite spin, Pauli’s exclusion principle al-
lows the electrons to freely move between two nuclei, which is impossible for
the paralell spins with anti-symmetric spatial wave function. This supports
the intuitive picture of two electrons being “shared” between two atoms.

For instance, think about water molecule H2O. Suppose you have filled
1s states, 2s states and 2p, m = 0 states of the oxygen (six electrons so far).
The remaining two electrons are “shared” with the hydrogen atoms with the
single valence-bonds. Of course hydrogen atoms contribute one electron each,
and we use four electrons in total for the bonds. What it means is that you
would put an electron in the 1s state of the hydrogen and another in the 2px

state (|x〉 = (−|m = 1〉 + |m = −1〉)/
√

2) of the oxygen, in the symmetric
spatial wave function. Do the same for the other hydrogen atom together
with the 2py state of the oxygen (|y〉 = i(|m = 1〉+ |m = −1〉)/

√
2). You can

easily write down the full electronic wave function given this configuration.
Note that this wave function would have two hydrogen atoms located at
90◦ opening because they are attached along the px and py orbitals of the
hydrogen, which doesn’t quite agree with data (108◦ degrees). That is due
to the Coulomb repulsion between electrons forcing the angle to widen up.
In the end, a better approximation of the electronic wave function is given
by the mixed orbitals discussed in the next section.

Nonetheless, the concept of valence bonds is extremely useful, and it is
quite nice that we can “derive” it in such a simple formulation.

1.4 Mixed Orbitals

Once the molecules are more complicated, the Coulomb repulsion among
electrons becomes more important. If the effect of the Coulomb repulsion
becomes larger than the splitting between atomic levels, they start to mix ,
causing linear combination of 2s and 2p states, for instance. In the example of
the water molecules at the end of the previous section, the Coulomb repulsion
overcomes the level splitting and the 2s and 2p form mixed orbitals sp3. We
also had used px and py orbitals in the previous section which we don’t
normally use in quantum mechanics. What are they?

First of all, the p states come with the spherical harmonics

Y 1
1 = −

√
3

8π
sin θeiφ, Y 0

1 =

√
3

4π
cos θ, Y −1

1 =

√
3

8π
sin θe−iφ. (26)

Because these states are degenerate (in the absence of external fields), we
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can free mix them as long as we keep the orthogonal to each other. It is
instructive to rewrite Eq. (26) in terms of Cartesian coordinates

Y 1
1 = −

√
3

8π

x + iy

r
, Y 0

1 =

√
3

4π

z

r
, Y −1

1 =

√
3

8π

x− iy

r
. (27)

Inspired by this form, one interesting basis is

Y x
1 =

1√
2
(−Y 1

1 + Y −1
1 ) =

√
3

4π

x

r
, (28)

Y y
1 =

i√
2
(Y 1

1 + Y −1
1 ) =

√
3

4π

y

r
, (29)

Y z
1 = Y 0

1 =

√
3

4π

z

r
. (30)

This is clearly another orthonormal basis. The advantage of this basis is
that it shows to which direction the wave function extends. For instance,
by multiplying them with the radial wave function of the 2p states re−r/2Za0

(up to a normalization constant), exponential fall-off of the wave function
is prolonged along the x-axis if the angular wave function is proportional to
x/r while it does off quicker along the y and z axes.

The mixed orbitals further mix different orbitals which would normally
(i.e. in the absence of external field caused by other atoms) have different
energy levels. The best example to discuss mixed orbitals is the methane
molecule CH4. The carbon atom has six electrons, two for 1s, two for 2s
and two for 2p in the absence of hydrogen atoms. However, to build four
valence bonds, we need four unpaired electrons, and we cannot afford to use
two electrons to fill 2s states. Instead, we distribute four electrons among
one 2s and three 2p states. But all hydrogen atoms are equal, and we should
also treat four electrons in n = 2 equally. The only way to do so is by
taking linear combinations of 2s and 2p states to form four orthonormal
states stretched along four axes of a tetrahedron. We can choose the vertices
of the tetrahedron to be

(0, 0,

√
3

2
), (

√
2

3
, 0,− 1

2
√

3
), (− 1√

6
,

1√
2
,− 1

2
√

3
), (− 1√

6
,− 1√

2
,− 1

2
√

3
).

(31)
(The vectors are intentially normalized to 3/4 rather than 1 for later conve-
niences.) The angles between axes is arccos−1

3
= 109.5◦. Correspondingly,
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we form four linear combinations

1

2
|s〉 +

√
3

2
|pz〉, (32)

1

2
|s〉+

√
2

3
|px〉 − 1

2
√

3
|pz〉, (33)

1

2
|s〉 − 1√

6
|px〉+

1√
2
|py〉 −

1

2
√

3
|pz〉, (34)

1

2
|s〉 − 1√

6
|px〉 −

1√
2
|py〉 −

1

2
√

3
|pz〉. (35)

It is easy to check that they indeed form an orthonormal set with the wave
functions stretched along the axes of the tetrahedron. Once you have explicit
forms of the orbitals, you can form the valence-bond wave function for elec-
trons shared between the carbon and one of the hydrogen atoms easily. This
way, you build up the methane molecule with the tetrahedral structure.

Similar molecules such as ammonia NH3 and water H2O are also well
approximated by the sp3 mixed orbitals where one (two) of them have elec-
trons only from the nitrogen (oxygen) which are not shared with the hy-
drogen. However, the opening angles are not exactly 109.5◦ but somewhat
smaller, interpolating between the situations with Cartesian combinations
(as discussed in the previous section) and the tetrahedral ones (as discussed
here).

There are also other kinds of mixed orbitals. The relevant ones for ethy-
lene C2H4 are sp2 mixed orbitals, arranged as a unilateral triangle on a plane.
For both carbon atoms, 1s states are filled, using two electrons already. For
the remaining four electrons, we put three of them into sp2 mixed orbitals
and the remaining one into 2pz orbital. The one in the 2pz is shared between
two carbon atoms, forming one valence bond between two carbons. The sp2

orbitals are given by

1√
3
|s〉+

√
2

3
|px〉, (36)

1√
3
|s〉 − 1√

6
|px〉+

1√
2
|py〉, (37)

1√
3
|s〉 − 1√

6
|px〉 −

1√
2
|py〉. (38)
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The first orbital along the x-axis can be shared between two carbon atoms,
giving the second valence bond. Therefore two carbon atoms are bonded
with a double bond. Other two sp2 orbitals are shared with 1s orbitals of
hydrogen atoms. This way, you build up the ethylene molecule with a planar
structure.

1.5 Molecular Orbitals

So far we had discussed building up molecules using the atomic orbitals,
i.e., by attaching electrons to one of the nuclei and forming valence bonds.
Even though this method nicely matches with the chemical formulae and
give simple intuition behind the molecular structure, it is quantiatively not as
good zeroth-order approximation compared to the molecular orbital method.
With the molecular orbitals, you situate nuclei at certain fixed locations,
and solve the Schrödinger equation for a single electron in the presence of
multiple Coulomb sources (nuclei). Clearly this can be done only numerically,
and we do not go into details. Once you find the molecular orbitals, you
start filling them up from the bottom, in the same way we did with the
multi-electron atoms. Of course the Coulomb repulsion among the electrons
again complicates the problem and you further need to rely on approximation
methods such as Hartree–Fock to build up the complete multi-electron wave
function based on molecular orbitals. But quantitatively this method is much
more successful that starting with atomic orbitals (thanks to Tony again).

The molecular orbital method is the literal application of the Born–
Oppenheimer approximation. Take hydrogen molecule as an example. In
the spirit of Born–Oppenhemier, we fix the positions of two protons, and
solve for the electronic wave functions. In the Heitler–London treatment we
discussed above, we used atomic orbitals for each electron associated with
either of the protons as the starting point of the discussion. The electrons
move around in the Coulomb potential from two protons. The first task
is to solve for single-particle electron wave functions in the presence of two
Coulomb sources. This has to be done numerically. However, some simple
consideratios help us to understand numerical results. First of all, the system
has an axial symmetry. If you choose the positions of two protons to be on
the z-axis, Jz is hence a good quantum numbers. All single-electron states
can be labeled by the eigenvalues of Jz. If you look at the single-electron
energy levels as a function of the distance between two protons R, we at least
know two limits: R → 0 where the problem reduces to the single-electron
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levels for Helium, and R → ∞ where you have two independent hydrogen
levels. For a finite d, the levels interpolate between these two limits.

In Fig. 2, you can see how the energy levels move around as you change
the inter-nuclear distance. When R = 0, what you see is the energy levels of
He+. The ground state is 1s, with m = 0. The next level is either 2s or 2p,
and hence there are two m = 0 states and two m = ±1 states. When you
separate two protons R 6= 0, there is no longer conserved l, but only m is
converved. The 1s state still has m = 0, and is now called 1σg. The symbol
σ is the Greek version of the atomic specroscopic symbol s, representing
m = 0 (not l). The subscript g means gerade, which is even in German.
The opposite is u meaning ungerade, odd. Even or add is the change of the
sign in the wave function when you interchange two protons. From the 2s
state, we again obtain 2σg. But the 2p states split into 1σu (for m = 0)
and 1πu (for m = ±1). They are “1” rather than “2” states because this
is the first occurance of σu and πu. Both of these states are odd under the
interchange of two protons. In general, even l states in the R = 0 limit lead
to gerade states for finite R, and odd l states to ungerade states. In the limit
of infinite R, each proton can have 1s states, both m = 0, and hence there
must be two independent σ states. This is the limit where atomic orbitals
can be used to label states. There must be symmetric and anti-symmetric
states, corresponding to 1σg and 1σu. This way, we know (without doing any
calculations) that m = 0 state out of the 2p states come down and join with
1s state to become two 1σu,g states. Similarly, the 2s and 2p states in the
R → ∞ limit are either symmetric or antisymmetric, with four m = 0, two
m = +1 and two m = −1 states. Therefore there must be 2σg, 2σu, 3σg,
3σu, 1πg, 1πu states. On the other hand, in the R → 0 limit, we indeed have
1πu states from 2p and 2σg from 2s, but we are missing 1πg, 2σu, and 3σg,
3σu. 1πg comes from 3d, 2σu from 3p, 3σg from a linear combination of 3s or
3d, and finally 3σu from a linear combination of 4p and 4f . This way, you
can systematically interpolate states between R = 0 and ∞. Of course, the
energy levels must be worked out numerically. As for the hydrogen molecule,
clearly the ground state is to put two electrons in 1σg state. Because you
put two electrons in the same orbital, clearly the spin wave function is anti-
symmetric. This is consistent with our discussion using the atomic orbitals.

In molecules with more than two atoms, the single-electron levels are
much more complicated. For instance, consider methane. You fix a cabon
and four hydrogen nuclei at some locations, and solve for the electronic wave
functions. You keep doing it for different configurations of the nuclei, and
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Figure 2: The single-electron energy levels of hydrogen molecule as a func-
tion of the distance between two protons. Taken from “Quantum Theory of
Matter,” John C. Slater, McGraw-Hill, 1968.
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look for the minimum for the sum of the electronic and inter-nuclear repulsive
Coulomb energies. This the molecular orbital method. Once single-electron
wave functions are obtained, you can further improve them by the variational
method or Hartree–Fock approach. Mother Nature does this calculation all
instantaneously!

2 Van der Waals Interaction

We had discussed the potential between two atoms as a function of the dis-
tance, using the first-order perturbation theory and atomic orbitals. Do we
then know the force between two neutral atoms? Look at the long-range
behavior of the potential we had calculated. It actually goes to zero at large
distances exponentially . This is because the potential comes from the expec-
tation values of the Coulomb potential with the exponentially decaying wave
functions.

It turns out that the dominant potential between two neutral atoms at
long distances is not given by the expectation value of the Coulomb interac-
tions, but rather at the second order , which gives a power-law dependence
than an exponential. Clearly, a power-law decays much slower than the expo-
nential and dominates at long distances. This power-law potential between
two neutral atoms is van der Waals interaction.

Here is a general argument that says that van der Waals potential decays
as 1/R6 at large R. Consider again two hydrogen atoms. Suppose R is large
enough R � a0 so that we can consider the electron 1 to be attached to the
proton A and the electron 2 to the proton B. The interaction Hamiltonian
is then

HI = − e2

r1B

− e2

r2A

+
e2

rAB

+
e2

r12

. (39)

Now we start making approximations. First fix two protons A and B along
the z-axis, say at z = −R/2 and z = R/2. Because r1A ∼ r2B ∼ a0 � R, we
can expand in them. More precisely, the electron 1 is at (x1, y1,−R/2 + z1),
and the electron 2 at (x2, y2, R/2 + z2). Clearly in the limit where x, y, z
vanish, the potential also vanishes. In other words, the atoms are neutral
and there is no “monopole” component 1/R in the potential. By expanding
it up to 1/R3, we find

HI =
e2

R3
(x1x2 + y1y2 − 2z1z2) + O(R−4). (40)

13



This is a dipole-dipole interaction. Now the important point is that when
you evaluate the expectation value of this term with the 1s states for each
atoms, the operator is basically x, y, or z, and the expectation values vanish
identically:

∆E1 = 〈HAHB|HI |HAHB〉 = 0. (41)

Therefore the dipole-dipole interaction does not lead to a potential between
the atoms at the first-order in perturbation theory. In other words, there
is no dipole moment in neither atom, and there is no classical dipole-dipole
interaction between atoms. However, x, y, or z have matrix elements between
1s and, say, 2p. Therefore there is a contribution at the second-order in
perturbation theory

∆E2 =
∑

i

〈HAHB|HI |i〉〈i|HI |HAHB〉
E0 − Ei

. (42)

This does not vanish in general. Because it uses HI twice, each giving 1/R3

behavior, we learn that the van der Waals potential behaves as 1/R6 at large
R. This is an interaction between induced dipoles or quantum polarizabili-
ties. The van der Waals force is a genuinely quantum effect.1

1Actually, at large distances, one also needs to take the retardation effects into account,
modifying the van der Waals potential to 1/R7 rather. There is also an interesting con-
nection to the Casimir effect, which we discuss when we quantize the radiation field. See
Milonni, P. W., and Shih, M. L., 1992, Contemp. Phys. 33, 313.
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