
HW #1 Solutions (221B)

1) Lippmann and Schwinger grow thin

Taking the x representation and inserting a complete set of x′ eigenstates, the
Lippmann-Schwinger equation reads

ψ(x) = φ(x) +
∫
dx′〈x| 1

E −H0 + iε
|x′〉V (x′)ψ(x′),

with notation as in the lecture notes. Following the notes we insert a complete
set of momentum eigenstates to find

ψ(x) = φ(x) +
∫
dx′V (x′)ψ(x′)

∫
dp

2π~
eip(x−x

′)/~

E − p2

2m + iε
.

Considering now the dp integral, the denominator factors so that∫
dp

2π~
eip(x−x

′)/~

E − p2

2m + iε
=
∫

dp

2π~
−2meip(x−x

′)/~

(p−
√

2mE − iε)(p+
√

2mE + iε)
,

where ε stands for any positive infinitessimal and the signs on the ε terms in the
right hand equation are chosen to reproduce +iε in the left hand equation. The
dp integral can be performed by a contour integration. When (x−x′) > 0 we can
close the contour in the upper half plane, picking up the pole at p =

√
2mE+ iε;

when (x− x′) < 0 we must close the contour in the lower half plane, picking up
the pole at p = −

√
2mE − iε. Taking 2πi times the residue at the appropriate

poles and calling E = ~
2k2/2m,∫

dp

2π~
eip(x−x

′)/~

E − p2

2m + iε
=
{ −im

~2k e
ik(x−x′), (x− x′) > 0

−im
~2k e

−ik(x−x′), (x− x′) < 0

}
=
−im
~

2k
eik|x−x

′|.

The Lippmann-Schwinger equation in one dimension is therefore

ψ(x) =
eikx√
2π~

+
−im
~

2k

∫
dx′eik|x−x

′| V (x′)ψ(x′).

We can check that

G(x, x′) =
−im
~

2k
eik|x−x

′|

is indeed a Green’s function for the free Schrodinger operator:

(
~

2k2

2m
+
~

2

2m
d2

dx2
)G(x, x′) = δ(x− x′).

Using |x−x′| = (x−x′)θ(x−x′)− (x−x′)θ(x−x′), d
dxθ(x) = δ(x) we compute

d
dxe

ik|x−x′| = ik eik|x−x
′|[θ(x− x′) + (x− x′)δ(x− x′)− θ(x′ − x) + (x− x′)δ(x′ − x)]

= ik eik|x−x
′|[θ(x− x′)− θ(x′ − x)];

d2

dx2 e
ik|x−x′| = −k2eik|x−x

′|[θ(x− x′)− θ(x′ − x)]2 + ik eik|x−x
′|[δ(x− x′) + δ(x′ − x)]

= −k2eik|x−x
′| + 2ik δ(x− x′).
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So that G(x, x′) is indeed the desired function.

2) Far from home

At asymptotic distances from the region of significant potential, r := |x| � a,
we can expand in the exponential,

|x− x′| =
√

(x− x′)2 = |x|

√
1− 2

xx′

|x|2
+
|x′|2
|x|2

≈ |x|(1− xx′

|x|2
) = r − xx′

r
.

Then

ψ(x) =
eikx√
2π~

+
−im
~

2k

∫
dx′eikr−i

kx
r x
′
V (x′)ψ(x′) =

1√
2π~

(eikx + f(k′, k)eikr)

is of the desired form, where

k′ = kx
r = ±k and f(k′, k) = − 2πim

~k 〈~k
′|V |ψ〉.

3) Playing with tigers

a)

Inserting the potential V (x) = γδ(x) into the Lippmann-Schwinger equation
from problem (1) and integrating over the delta-function,

ψ(x) =
eikx√
2π~

+
−imγ
~

2k
eik|x|ψ(0).

Evaluating this equation at x = 0 gives an expression which we can solve for
ψ(0),

ψ(0) =
1√
2π~

+
−imγ
~

2k
eik|x|ψ(0)⇒ ψ(0) =

1√
2π~

~
2k

~
2k + imγ

,

so that

ψ(x) =
1√
2π~

(eikx − eikr imγ

~
2k + imγ

).

b)

In the regions x > 0, x < 0, the potential vanishes and ψ(x) is just a sum
of same-energy plane waves which clearly satisfies the free Schrodinger equa-
tion. At x = 0 there is a delta-function, which instructs us to check that the
Schrodinger equation holds under an integral sign:

lim
ε→0

∫ ε

−ε
− ~

2

2m
d2

dx2
ψ + γδ(x)ψ ?=

~
2k2

2m
ψ.
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In fact the equality holds since

limε→0

∫ ε
−ε−

~
2

2m
d2

dx2ψ + γδ(x)ψ = limε→0− ~
2

2m (ψ′(ε)− ψ′(−ε)) + γψ(0)
= − ~

2

2m
2kmγ

~2k+imγ + γ ~
2k

~2k+imγ = 0,

and also

lim
ε→0

∫ ε

−ε

~
2k2

2m
ψ(x) = 0.

Alternatively, you can just differentiate carefully as in the solution to prob-
lem (1). Such derivatives are well-defined as part of the mathematical theory
of ‘distributions.’ Distributions are defined as continuous functionals on the
space of suitably well-defined ‘test functions’ (usually taken to be infinitely dif-
ferentiable functions which are zero everywhere but a compact subspace of Rn).
θ(x), δ(x), 1, are all examples of such distributions which are defined with an
integral. I.e. for a test function f ,

θ[f ] :=
∫∞
−∞ dxf(x) θ(x) :=

∫∞
0
f(x),

δ[f ] :=
∫∞
−∞ dxf(x) δ(x) := f(0),

1[f ] :=
∫∞
−∞ dxf(x) 1 =

∫∞
−∞ dxf(x).

Distributions are infinitely differentiable, differentiation being defined in analogy
with integration by parts. That is, for a distribution T , d

dxT [f ] := T [− d
dxf ]. It

is easy to check from the above definitions that this gives d
dxθ = δ.

A rigorous formulation of distributions isn’t too relevant to physics, because
objects like delta-functions only appear in physics as idealized limits of more
respectible functions, e.g. gaussians. So we might as well add funny math to
our funny physics when we make these idealizations. But if you ever do see an
expression with delta functions in it, know that it’s best hope of being defined
involves integration. That said, our above use of delta functions in scattering
problems is not well-defined, because complex exponentials (plane waves) are
not integrable and so fail to qualify as well-defined test functions. This is why we
have to resort to the somewhat awkward prescription of integrating over (−ε, ε)
and taking the limit ε → 0. On true test functions, an equation involving
distributions is said to hold when it holds under an integral over all Rn.

c)

As we discussed in section, it is generally true that a scattering amplitude has
poles at energies of any ‘relevant’ bound states. A pole at a real energy E
corresponds to true bound state, while a pole at complex E corresponds to a
metastable bound state which can appear as a resonance in a scattering exper-
iment. One way to think about this latter phenomenon is to look at equation
(26) in the first lecture notes which describes the time-dependent solution for
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scattering of a wave packet. For ~q sufficiently near ~k, the d~q integral will pick up
a pole in f(~q′, ~q) and give a contribution to ψ with time dependence ∼ e−iEt/~,
which for E = Er − iΓ/2 will decay in time as e−Γt/2~. At small times there
is a high probability to find the particle trapped near the source of potential,
but at long times this configuration becomes unlikely and the particle escapes
to infinity.

In this problem the pole in f(k′, k) is at k = −imγ/~2, which corresponds to
the real energy E = −mγ2/2~2. So we know there exists a stable bound state
of that energy. In our derivation of the Lippmann-Schwinger equation, the only
place we assume E > 0, i.e. a scattering state, is when we add the incoming
plane wave φ(x) to the right hand side to satisfy our boundary conditions. We
can do this because a continuum state by definition can have any energy > 0;
in particular we can always find a free solution φ(x) which has the same energy
as our scattering state ψ(x). This does not work for bound states which have
discrete energies < 0. But if we leave out φ(x) and fix different boundary
conditions, our derivation of the Lippmann-Schwinger equation holds for bound
states too. That is, we can read off the bound-state wavefunction from our
solution to part (a):

ψbound(x) ∼ eikr

will be a bound-state solution when we plug in k = −imγ/~2. Boundary con-
ditions for a bound state are that the wavefunction decays at both infinities,
which this clearly does for γ < 0. Normalizing,

ψbound =

√
−mγ
~

2
emγr/~

2
.

It is easy to check that

− ~
2

2m
d2

dx2
emγr/~

2
+ γδ(x)emγr/~

2
=
−mγ2

2~2
emγr/~

2
.

d)

Plugging V (~x) = γδ(~x) into the 3-d Lippmann-Schwinger equation gives

ψ(~x) =
1

(2π~)3/2
ei
~k~x − 2m

~
2

eik|~x|

4π|~x|
γψ(0).

To avoid singularity at the origin we require ψ(0) = 0, but then the scattering
term vanishes, and we are left with the free plane wave

ψ(x) =

{
1

(2π~)3/2 e
i~k~x, x 6= 0

0, x = 0
,

the singularity in the potential allowing the discontinuous wavefunction. I made
an argument on email that this is a solution to the Schrodinger equation, and I
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contrived a bad explation for the consistency of the Lippmann-Schwinger equa-
tion at the origin. Professor Murayama explains that the consistency instead
follows from the relation 0

0 = 1. Or rather, it is possible to arrange that

−2m
~

2

eik|~x|

4π|~x|
γψ(0) = − 1

(2π~)3/2
as |~x| → 0.

This is at least a logical possibility, and I think justification must rely on solving
the problem for, say, a spherically symmetric square well and taking the limit
as the square well approaches a delta-function. Then we can compute

−2m
~

2

∫
d~x′

eik|~x−~x
′|

4π|~x− ~x′|
V (~x′)ψ(~x′)

and convince ourselves that in the limit V (~x) → δ(~x) this integral does tend
to the appropriate value (0 for |~x| 6= 0, 1/(2π~)3/2 for |~x| = 0). The square
well problem can be solved exactly using a partial wave expansion, and we can
come back to this when we cover partial waves if there is large demand, but the
computation is a little tedious which is a lot more than the significance of this
point.

One thing we should do when we come to partial waves is to look at the phase
shifts for the square well potential to convince ourselves that the scattering
amplitude vanishes as the square well becomes a delta-function. Explicitly, we
want to study

V =
{
−V0, |~x| ≤ a

0, |~x| > a
.

in the limit V0 →∞, a→ 0, V0a
3 fixed. I had hoped to demonstrate this with

the Born approximation, but in my initial calculation I was taking the wrong
limit, and in fact the Born approximation to the scattering amplitude does not
vanish:

f(~k′,~k) = − (2π~)3

4π
2m
~2 〈~~k′|V |~~k〉

= − m
2π~2

∫
d~x ei~q·~xV

= 2mV0
i~2q2 (−a cos qa+ 1

q sin qa),

where ~q = ~k − ~k′ is the momentum transfer. In the limit

dσ
dΩ = |f |2 = 4m2

~4q4 | − V0a cos qa+ V0
q sin qa|2

≈ 4m2

~4q4 | − V0a(1− q2a2

2 ) + V0
q (qa− q3a3

6 ) + O(V0a
5)|2

→ 4m2V 2
0 a

6

9~4 ,
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which is clearly non-zero.
This seeming contradiction arises because the Born approximation itself fails

in the limit, the validity criterion

(const)V0a
2 � 1

breaking down for sufficiently small a since V0 diverges as a−3. We need to treat
the square well exactly (or at least in a better approximation scheme) to see that
the scattering amplitude vanishes as the square well becomes a delta-function.

The lesson here is that playing with delta functions is a little bit like walking
through Tilden park oblivious of the tigers hiding in the chapparal. Most of the
time we’re fine, but it can be dangerous, and if we want to verify our math
with physical understanding we should treat delta functions as limits of more
sociable functions. Even then these tigers may turn out to be dragons in tigers’
clothing, because the limits themselves may make the physics ill-defined.
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