
HW #3 Solutions (221B)

1) Marble

The phase shifts tan δl = − jl(ka)
nl(ka) were derived in the lectures notes. To

study their behavior, we will need various relations of the spherical bessel
functions, most of which can be found in your favorite QM textbook. All
can be found in Gradshteyn and Ryzhik (G&R), Table of Integrals, Series,
and Products, which lives behind the desk in the physics library. There’s
a party on every page. (Please do not confuse G&R with their namesakes
GNR, i.e. Guns ‘n’ Roses, who also sponsor worthy parties.) Note that Prof.
Murayama’s definition of spherical bessel functions are related to those in
G&R and those in Mathematica by

jl(z) =
√

π

2z
Jl+ 1

2
(z), nl(z) = −

√
π

2z
Nl+ 1

2
(z). (1)

a)

This is an excercise in massaging spherical bessel and trig. functions.

− jl(ka)
nl(ka)

= tan δl = −ie
iδl − e−iδl
eiδl + e−iδl

= −ie
2iδl − 1
e2iδl + 1

.

Algebra then gives

e2iδl =
nl(ka)− ijl(ka)
nl(ka) + ijl(ka)

=
h

(−)
l (ka)

h
(+)
l (ka)

.

Note that Prof. Murayama’s nl differs from that given in most quantum
mechanical textbooks by a sign (the same minus sign as in eqn. [1]), and his
Hankle functions h(±)

l differ by factors of i.

b)

Here we make use of the small-argument expansion of the spherical bessel
functions. Remembering Prof. Murayama’s definitions of jl, nl,

jl(z)→
(z)l

(2l + 1)!!
, nl(z)→

(2l − 1)!!
(z)l+1

as z → 0.

This is the first term in the general series expansion for Jν(z) given on p.
970 of the most recent G&R, and it is sufficient for this problem. For small
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ka all the phase shifts tend to zero, so that

δl ≈ tan δl = − jl(ka)
nl(ka)

≈ − (ka)l

(2l + 1)!!
(ka)l+1

(2l − 1)!!
= − (ka)2l+1

(2l + 1)!!(2l − 1)!!
.

Since factorials increase much faster than logs, the factorials in the denomi-
nator actually play a larger role in damping the large-l δl’s than the (ka)2l+1

(for fixed ka).

c)

In this and the next part, we are trying to demonstrate by explicit calculation
the semi-classical argument that for l & ka, the particle cannot penetrate
the potential barrier to the region of potential; only the exponential tail of
the wavefunction leaks into the scatterer, so the partial wave cross sections
σl should be strongly damped.

By simple algebra,

tan2 δl = −
j2
l (ka)
n2
l (ka)

=⇒ sin2 δl =
j2
l (ka)

j2
l (ka) + n2

l (ka)
,

so that

σl =
4π
k2

(2l + 1)
j2
l (ka)

j2
l (ka) + n2

l (ka)
. (2)

The mathematica computations for sample l values can be found in the
separate notebook file.

d)

Since we are interested in values l & ka, we cannot use the asymptotic
expansions

jl(z)→
sin(z − lπ/2)

z
, nl(z)→

cos(z − lπ/2)
z

as |z| → ∞, (3)

because l & ka presupposes finite ka. (We will use these expressions in part
(e).) Instead we need an expansion good for large but finite ka . l. G&R
p. 974 offers such an expression. They look a little bit nasty, but since we
are only interested in leading behvior in ka/l, we only need consider the
exponential factors out front. In G&R notation,

Jν(
ν

coshα
) ∼ eν tanhα−να
√

2νπ tanhα
, Nν(

ν

coshα
) ∼ − eνα−ν tanhα√

π
2 ν tanhα

.
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In our notation, ν = l+ 1
2 ; and for large l/ka we have (l+ 1

2)/ka ≈ coshα ≈
eα/2, α ≈ log (2l + 1)/ka, tanhα ≈ 1 − 2e−2α ≈ 1 − (ka)2

(2l+1)2 ≈ 1; so that in
our notation these relations become

jl(ka) ∼
√

π

2ka
e(l+ 1

2
)−(l+ 1

2
) log (2l+1)/ka√

(2l + 1)π
=

√
1

2(2l + 1)ka
e−(l+ 1

2
)(log (2l+1)/ka−1),

nl(ka) ∼
√

π

2ka
e(l+ 1

2
) log (2l+1)/ka−(l+ 1

2
)√

(l+ 1
2

)π

2

=

√
2

(2l + 1)ka
e+(l+ 1

2
)(log (2l+1)/ka−1).

For large l, nl clearly dominates over jl, so that after rewriting the expo-
nentials,

σl ≈
4π
k2

(2l + 1)
j2
l (ka)
n2
l (ka)

∼ π

k2
(2l + 1)

(
eka

2l + 1

)2l+1

(l & ka).

This approximation presupposes l somewhat larger than ka and becomes
increasingly valid as l � ka. For l & ka, the σl are exponentially damped
in l, which matches the behavior found in part (c).

e)

The analysis of parts (c) and (d) tells us that the partial cross sections for
l & ka make negligible contribution to the total cross section, so to good
approximation we can cutoff the sum over partial waves at l = ka:

σ ≈
ka∑
l=0

σl.

Now that l < ka for all l of interest, we can use the large-ka aymptotic
expansions in equation [3]. Plugging into equation [2] and approximating
further by sending

∑
→
∫

,

σ ≈
ka∑
l=0

σl ≈
4π
k2

∫ ka

0
dl (2l + 1) sin2 (ka− lπ/2).

For large ka, the sin2 term oscillates rapidly, and being multiplied by the slow
linear function (2l + 1), effectively contributes a factor equal to its average
value of 1/2. The main error comes from counting incomplete cycles of the
sin2 function and decreases linearly as ka increases. Thus

σ ≈ 4π
k2

∫ ka

0
dl

2l + 1
2
≈ 2πa2.
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2) Moat

For the potential

V (r) = γδ(r − a)

we are asked to consider certain scattering and bound S-wave states. For
macroscopic a, γ < 0, this potential has physical interpretation as castle
defense. In the microscopic with γ > 0 this potential imitates some gross
features of a nucleus: An incoming α particle faces a repulsive electric bar-
rier but can be trapped on the interior by the strong nuclear force. The
nucleus then is unstable to α decay, the α tunneling out through the poten-
tial barrier.

a)

This is the particle in a box. The radial part of the free wavefunction finite
at the origin is R0 ∝ j0(kr). (The problem asks only for S-waves.) The
wavefunction must vanish at the infinite potential wall at r = a, requiring
j0(ka) = 0. Then

0 = j0(ka) =
sin ka
ka

=⇒ ka = nπ.

This is the same condition as for poles in the scattering amplitudes with
γ →∞.

b)

In this part we are asked to find conditions on γ such that a bound state
can exist about r = a. This is the 1-d bound state problem for the delta-
function potential; we seek an ordinary bound state, distinguished from
the metastable bound states in the scattering problem by having a purely
imaginary k (or real negative E.)

The program is that of HW #1: Find a free-particle wave function and
match the discontinuity in derivatives at r = a to the strength of the delta
function. We need our wavefunction to be finite at the origin and to decay
to zero as r →∞. Thus

R0 =

{
j0(iκr) = sinhκr

κr , r < a

Bh
(+)
0 (iκr) = B′ e

−κr

κr , r > a,

where κ is real > 0, defined by E = −~2κ2

2m , and B′ = iB are constants. We
require E real < 0 for a bound state.

4



At r = a continuity of R0 forces B′ = eκa sinhκa. Integrating the
Schrodinger equation over (a− ε, a+ ε) as ε→ 0 requires additionally that

− ~
2

2m
(
−B′κe

−κa

κa
−B′ e

−κa

κa2
− κ coshκa

κa
+

sinhκa
κa2

)
+
γ sinhκa

κa
= 0,

or

−2mγ
~

2κ
= 1 + cothκa.

For given γ, a bound state will exist if this equation has a solution for κ real
> 0. (You should check that you can find this same condition by looking
for poles in the scattering amplitude for k = iκ purely imaginary.) Such
solutions will only exist for γ sufficiently negative. By playing around with
graphical solutions in Mathematica, I find that a solution and hence a bound
state exists when −2mγa

~2 > 1.
Analytically you can see this by noting that as κ→∞,

−2mγa
~

2

1
κa

< 1 + cothκa

regardless of γ. Then look at small κ. If for some κ we find

−2mγa
~

2

1
κa

> 1 + cothκa,

the functions must have crossed, i.e. we have a solution. As stated above,
this will happend when −2mγa

~2 := 1 + ε > 1. This is because at small κ,
1 + cothκa ∼ 1 + 1/κa > 1/κa when ε = 0, but 1 + 1/κa < (1 + ε)/κa for
ε > 0 and some sufficiently small κ.

c)

The analysis here repeats the above, except that we take E = ~
2k2

2m > 0 for
a scattering solution. The radial wavefunction finite at the origin goes as

R0 =

{
sin kr
kr , r < a

B sin(kr+δ0)
kr , r > a,

Imposing the same boundary conditions at r = a as in part (b), we find the
condition

−2mγ
~

2k
= − cot(ka+ δ0) + cot ka.
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Now it’s just an algebra problem to find

e2iδ0 =
1 + 2mγ

~2k
e−ika sin ka

1 + 2mγ
~2k

eika sin ka
.

In the limit γ → 0, cot(ka + δ0) = cot ka implies δ0 = 0, no scattering.
In the limit γ →∞, cot ka is finite, and we must have cot(ka+ δ0) infinite,
i.e. δ0 = −ka, the hard sphere result.
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