HW #6 Solutions (221B)

Since the Hamiltonian is spin independent, we can choose any spin state for the n = 2 electon, and our results will be the same. I take spin up. Likewise, the Hamiltonian is rotationally symmetric so we can choose any value for the n = 2 m value. I will leave m a free variable.

a)

Since we are not using coordinates \vec{x}_1 , \vec{x}_2 , \vec{x}_3 to label our electrons, we need another scheme, e.g. subscripts on the ket vectors:

$$\psi(1s^22s) = \frac{1}{\sqrt{3!}} \begin{vmatrix} |1s^{\uparrow}\rangle_1 & |1s^{\uparrow}\rangle_2 & |1s^{\uparrow}\rangle_3 \\ |1s^{\downarrow}\rangle_1 & |1s^{\downarrow}\rangle_2 & |1s^{\downarrow}\rangle_3 \\ |2s^{\uparrow}\rangle_1 & |2s^{\uparrow}\rangle_2 & |2s^{\uparrow}\rangle_3 \end{vmatrix},$$

and likewise for $\psi(1s^22p)$.

b)

We presuppose when we write down a wavefunction out of products of singleparticle wavefunctions that H_0 splits into a sum of single-particle Hamiltonians. For the record, the energy in atomic units (ref. solutions to HW #5) is

$$E_0 = 2E_{n=1} + E_{n=2} = 2(-\frac{Z^2}{2}) - \frac{Z^2}{8} = -\frac{9Z^2}{8} = -\frac{81}{8},$$

the last equality holding for Lithium (Z = 3).

c)

By antisymmetry of the wavefunction,

$$\langle \Delta H \rangle = \langle \frac{e^2}{r_{12}} + \frac{e^2}{r_{13}} + \frac{e^2}{r_{23}} \rangle = 3 \langle \frac{e^2}{r_{12}} \rangle.$$

(E.g.

$$\langle 123|\frac{e^2}{r_{12}}|123\rangle = -\langle 132|\frac{e^2}{r_{12}}(-|132\rangle) = \langle 123|\frac{e^2}{r_{13}}|123\rangle,$$

the first equality following by antisymmetry, the second by relabeling.) Therefore only cross terms with identical third-particle states are nonzero,

and since everything is normalized, we can drop third-particle states in our notation.

$$\begin{split} \langle \Delta H \rangle &= 3 \langle \frac{e^2}{r_{12}} \rangle \\ &= 3 \times \frac{1}{6} \quad \left(\langle 1s^{\uparrow} 1s^{\downarrow} | \frac{e^2}{r_{12}} | 1s^{\uparrow} 1s^{\downarrow} \rangle - \langle 1s^{\uparrow} 1s^{\downarrow} | \frac{e^2}{r_{12}} | 1s^{\downarrow} 1s^{\uparrow} \rangle \right. \\ &+ \langle 1s^{\uparrow} 2s^{\uparrow} | \frac{e^2}{r_{12}} | 1s^{\uparrow} 2s^{\uparrow} \rangle - \langle 1s^{\uparrow} 2s^{\uparrow} | \frac{e^2}{r_{12}} | 2s^{\uparrow} 1s^{\uparrow} \rangle \\ &+ \langle 1s^{\downarrow} 1s^{\uparrow} | \frac{e^2}{r_{12}} | 1s^{\downarrow} 1s^{\uparrow} \rangle - \langle 1s^{\downarrow} 1s^{\uparrow} | \frac{e^2}{r_{12}} | 1s^{\uparrow} 1s^{\downarrow} \rangle \\ &+ \langle 2s^{\uparrow} 1s^{\uparrow} | \frac{e^2}{r_{12}} | 2s^{\uparrow} 1s^{\uparrow} \rangle - \langle 2s^{\uparrow} 1s^{\uparrow} | \frac{e^2}{r_{12}} | 1s^{\uparrow} 2s^{\uparrow} \rangle \\ &+ \langle 1s^{\downarrow} 2s^{\uparrow} | \frac{e^2}{r_{12}} | 1s^{\downarrow} 2s^{\uparrow} \rangle - \langle 1s^{\downarrow} 2s^{\uparrow} | \frac{e^2}{r_{12}} | 2s^{\uparrow} 1s^{\downarrow} \rangle \\ &+ \langle 2s^{\uparrow} 1s^{\downarrow} | \frac{e^2}{r_{12}} | 2s^{\uparrow} 1s^{\downarrow} \rangle - \langle 2s^{\uparrow} 1s^{\downarrow} | \frac{e^2}{r_{12}} | 1s^{\downarrow} 2s^{\uparrow} \rangle \Big). \end{split}$$

Since $r_{12} = r_{21}$ there are exactly two of every term.

d)

The 2nd, 6th, 10th, and 12th terms vanish by orthogonality of spin wavefunctions. The 3rd, 7th, 9th, and 11th terms are equal. Thus

$$\langle \Delta H \rangle = \langle 1s1s | \frac{e^2}{r_{12}} | 1s1s \rangle + 2 \langle 1s2s | \frac{e^2}{r_{12}} | 1s2s \rangle - \langle 1s2s | \frac{e^2}{r_{12}} | 2s1s \rangle,$$

and likewise for p states.

e)

In part (f), we will have to distinguish between a variational parameter λ and the charge Z in the Hamiltonian which isn't varied, so I will use λ in the wavefunctions in this calculation. I use atomic units. We need to calculate the 3 terms in part (d) for both 2s and 2p cases. I'll do one example and quote results for the others.

Using the expression in the lecture notes

$$\frac{1}{r_{12}} = \sum_{l,m} \frac{4\pi}{2l+1} \frac{r_{<}^{l}}{r_{>}^{l+1}} Y_{lm}^{*}(1) Y_{lm}(2),$$

where the argument 1 in the spherical harmonics means (θ_1, ϕ_1) ,

$$\begin{aligned} \langle 1s2p|\frac{1}{r_{12}}|1s2p\rangle &= \int d^{3}\vec{r_{1}}d^{3}\vec{r_{2}} \quad \sum_{l,m} \frac{4\pi}{2l+1} \frac{r_{<}^{l}}{r_{>}^{l+1}} Y_{lm}^{*}(1)Y_{lm}(2) \\ &\times (2\lambda^{3/2}e^{-\lambda r_{1}}Y_{00}^{*}(1)) \times (\frac{\sqrt{6}}{12}\lambda^{3/2}\lambda r_{2} e^{-\lambda r_{2}/2}Y_{1m'}^{*}(2)) \\ &\times (2\lambda^{3/2}e^{-\lambda r_{1}}Y_{00}(1)) \times (\frac{\sqrt{6}}{12}\lambda^{3/2}\lambda r_{2} e^{-\lambda r_{2}/2}Y_{1m'}(2)). \end{aligned}$$

We want to evaluate this by using the orthogonality relations for spherical harmonics, but they don't hold if there is other angular dependence (e.g. a third spherical harmonic) in the integral. However, note that $Y_{00}^* = \frac{1}{\sqrt{4\pi}}$ is actually independent of angle, so we can pull it outside the integral. Then we can evaluate the remaining θ_1, ϕ_1 angular dependence,

$$\int d\cos\theta_1 d\phi_1 \, Y_{lm}^*(1) Y_{00}(1) = \delta_{l0} \delta_{m0}.$$

We then use the delta functions to cancel the sum and fix l = 0, m = 0elsewhere. That is good because then $Y_{lm}(2) \to Y_{00}(2) = \frac{1}{\sqrt{4\pi}}$, and then there are only two remaining θ_2, ϕ_2 spherical harmonics:

$$\int d\cos\theta_2 d\phi_2 Y^*_{1m'}(2) Y_{1m'}(2) = 1.$$

We are left with

$$\begin{aligned} \langle 1s2p|\frac{1}{r_{12}}|1s2p\rangle &= \int r_1^2 dr_1 \, r_2^2 dr_2 \, \frac{1}{r_>} \times (2\lambda^{3/2}e^{-\lambda r_1}) \times (\frac{\sqrt{6}}{12}\lambda^{3/2}\lambda r_2 \, e^{-\lambda r_2/2}) \\ &\times (2\lambda^{3/2}e^{-\lambda r_1}) \times (\frac{\sqrt{6}}{12}\lambda^{3/2}\lambda r_2 \, e^{-\lambda r_2/2}) \\ &= \frac{\lambda^8}{6} \int dr_1 \, dr_2 \, \frac{1}{r_>} \, r_1^2 \, r_2^4 \, e^{-2\lambda r_1} \, e^{-\lambda r_2}. \end{aligned}$$

Because of the $1/r_{>}$ we need to split the integral into two parts,

$$= \frac{\lambda^8}{6} \int dr_1 r_1^2 e^{-2\lambda r_1} \bigg\{ \int_0^{r_1} dr_2 \frac{1}{r_1} r_2^4 e^{-\lambda r_2} + \int_{r_1}^{\infty} dr_2 \frac{1}{r_2} r_2^4 e^{-\lambda r_2} \bigg\}.$$

Mathematica does these integrals nicely, giving $\frac{\lambda^8}{6} \times \frac{118}{81\lambda^7}$. Following analagous procedures, I find

$$\langle 1s1s|\frac{1}{r_{12}}|1s1s\rangle = \frac{5\lambda}{8}$$

$$\langle 1s2s|\frac{1}{r_{12}}|1s2s\rangle = \frac{17\lambda}{3^4}$$

$$\langle 1s2s|\frac{1}{r_{12}}|2s1s\rangle = \frac{2^4\lambda}{3^6}$$

$$\langle 1s2p|\frac{1}{r_{12}}|1s2p\rangle = \frac{59\lambda}{3^5}$$

$$\langle 1s2p|\frac{1}{r_{12}}|2p1s\rangle = \frac{7\cdot2^4\lambda}{3^8}.$$

Setting $\lambda \to Z$, and then using Z = 3,

$$\Delta E_{1s^22s} = \frac{5Z}{8} + 2\frac{17Z}{3^4} - \frac{2^4Z}{3^6} \approx 1.022Z \approx 3.068.$$

This contribution raises the energy, as one would expect for electron repulsion, and is a significant offset to the zeroth-order result $E_0 = -\frac{9Z^2}{8} = -\frac{81}{8}$. When we have a 2p electron instead,

$$\Delta E_{1s^22p} = \frac{5Z}{8} + 2\frac{59Z}{3^5} - \frac{7 \cdot 2^4 Z}{3^8} \approx 1.094Z \approx 3.282.$$

In total,

$$(E_0 + \Delta E)_{1s^2 2s} \approx -7.057$$

 $(E_0 + \Delta E)_{1s^2 2p} \approx -6.843.$

Confirming our intuition, the total $E_0 + \Delta E$ has smaller magnitude for the 2p than the 2s case: The 2p electron is in a more 'circular' orbit, so it sees less of the nuclear charge (i.e. it is screened more by the inner electrons).

f)

In our trial wavefunctions we replace Z with λ as above. The zeroth-order single-particle contributions to the energy with this wavefunction are

$$\langle 1s|\frac{p^2}{2m}|1s\rangle = \frac{\lambda^2}{2}, \qquad \langle 2s|\frac{p^2}{2m}|2s\rangle = \langle 2p|\frac{p^2}{2m}|2p\rangle = \frac{\lambda^2}{8},$$

$$\langle 1s|\frac{-Z}{r}|1s\rangle = -Z\lambda, \qquad \langle 2s|\frac{-Z}{r}|2s\rangle = \langle 2p|\frac{-Z}{r}|2p\rangle = -\frac{Z\lambda}{4},$$

as you can easily compute. Thus

$$\langle \psi_{var}(1s^22s)|H|\psi_{var}(1s^22s)\rangle = 2\frac{\lambda^2}{2} + \frac{\lambda^2}{8} - 2Z\lambda - \frac{Z\lambda}{4} + 1.022\lambda,$$

the last being the ΔE contribution. Minimizing with respect to λ (and taking Z=3) gives

$$\lambda \approx Z - \frac{4}{9} \cdot 1.022 \approx 2.545, \qquad (1s^2 2s)$$
$$E_{var} \approx -7.289$$

We find $\lambda < Z$, properly reflecting the screening effect of the electrons. As with Helium, the variational energy counters the over-correction from perturbation theory. Repeating for the $1s^22p$ case,

$$\lambda \approx 2.514, \qquad (1s^2 2p).$$

$$E_{var} \approx -7.110$$