
HW #6 Solutions (221B)

Since the Hamiltonian is spin independent, we can choose any spin state for
the n = 2 electon, and our results will be the same. I take spin up. Likewise,
the Hamiltonian is rotationally symmetric so we can choose any value for
the n = 2 m value. I will leave m a free variable.

a)

Since we are not using coordinates ~x1, ~x2, ~x3 to label our electrons, we need
another scheme, e.g. subscripts on the ket vectors:

ψ(1s22s) =
1√
3!

|1s↑〉1 |1s↑〉2 |1s↑〉3
|1s↓〉1 |1s↓〉2 |1s↓〉3
|2s↑〉1 |2s↑〉2 |2s↑〉3

,

and likewise for ψ(1s22p).

b)

We presuppose when we write down a wavefunction out of products of single-
particle wavefunctions that H0 splits into a sum of single-particle Hamilto-
nians. For the record, the energy in atomic units (ref. solutions to HW #5)
is

E0 = 2En=1 + En=2 = 2(−Z
2

2
)− Z2

8
= −9Z2

8
= −81

8
,

the last equality holding for Lithium (Z = 3).

c)

By antisymmetry of the wavefunction,

〈∆H〉 = 〈 e
2

r12
+
e2

r13
+
e2

r23
〉 = 3〈 e

2

r12
〉.

(E.g.

〈123| e
2

r12
|123〉 = −〈132| e

2

r12
(−|132〉) = 〈123| e

2

r13
|123〉,

the first equality following by antisymmetry, the second by relabeling.)
Therefore only cross terms with identical third-particle states are nonzero,
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and since everything is normalized, we can drop third-particle states in our
notation.

〈∆H〉 = 3〈 e2r12
〉

= 3× 1
6

(
〈1s↑1s↓| e2r12

|1s↑1s↓〉 − 〈1s↑1s↓| e2r12
|1s↓1s↑〉

+〈1s↑2s↑| e2r12
|1s↑2s↑〉 − 〈1s↑2s↑| e2r12

|2s↑1s↑〉
+〈1s↓1s↑| e2r12

|1s↓1s↑〉 − 〈1s↓1s↑| e2r12
|1s↑1s↓〉

+〈2s↑1s↑| e2r12
|2s↑1s↑〉 − 〈2s↑1s↑| e2r12

|1s↑2s↑〉
+〈1s↓2s↑| e2r12

|1s↓2s↑〉 − 〈1s↓2s↑| e2r12
|2s↑1s↓〉

+〈2s↑1s↓| e2r12
|2s↑1s↓〉 − 〈2s↑1s↓| e2r12

|1s↓2s↑〉
)
.

Since r12 = r21 there are exactly two of every term.

d)

The 2nd, 6th, 10th, and 12th terms vanish by orthogonality of spin wave-
functions. The 3rd, 7th, 9th, and 11th terms are equal. Thus

〈∆H〉 = 〈1s1s| e
2

r12
|1s1s〉+ 2 〈1s2s| e

2

r12
|1s2s〉 − 〈1s2s| e

2

r12
|2s1s〉,

and likewise for p states.

e)

In part (f), we will have to distinguish between a variational parameter λ
and the charge Z in the Hamiltonian which isn’t varied, so I will use λ in the
wavefunctions in this calculation. I use atomic units. We need to calculate
the 3 terms in part (d) for both 2s and 2p cases. I’ll do one example and
quote results for the others.

Using the expression in the lecture notes

1
r12

=
∑
l,m

4π
2l + 1

rl<

rl+1
>

Y ∗lm(1)Ylm(2),

where the argument 1 in the spherical harmonics means (θ1, φ1),

〈1s2p| 1
r12
|1s2p〉 =

∫
d3~r1d

3~r2
∑

l,m
4π

2l+1
rl<
rl+1
>

Y ∗lm(1)Ylm(2)

×(2λ3/2e−λr1Y ∗00(1))× (
√

6
12 λ

3/2λr2 e
−λr2/2Y ∗1m′(2))

×(2λ3/2e−λr1Y00(1))× (
√

6
12 λ

3/2λr2 e
−λr2/2Y1m′(2)).
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We want to evaluate this by using the orthogonality relations for spherical
harmonics, but they don’t hold if there is other angular dependence (e.g. a
third spherical harmonic) in the integral. However, note that Y ∗00 = 1√

4π
is

actually independent of angle, so we can pull it outside the integral. Then
we can evaluate the remaining θ1, φ1 angular dependence,∫

d cos θ1dφ1 Y
∗
lm(1)Y00(1) = δl0δm0.

We then use the delta functions to cancel the sum and fix l = 0,m = 0
elsewhere. That is good because then Ylm(2) → Y00(2) = 1√

4π
, and then

there are only two remaining θ2, φ2 spherical harmonics:∫
d cos θ2dφ2 Y

∗
1m′(2)Y1m′(2) = 1.

We are left with

〈1s2p| 1
r12
|1s2p〉 =

∫
r2

1dr1 r
2
2dr2

1
r>
× (2λ3/2e−λr1)× (

√
6

12 λ
3/2λr2 e

−λr2/2)

×(2λ3/2e−λr1)× (
√

6
12 λ

3/2λr2 e
−λr2/2)

= λ8

6

∫
dr1 dr2

1
r>

r2
1 r

4
2 e
−2λr1 e−λr2 .

Because of the 1/r> we need to split the integral into two parts,

=
λ8

6

∫
dr1 r

2
1 e
−2λr1

{∫ r1

0
dr2

1
r1
r4

2 e
−λr2 +

∫ ∞
r1

dr2
1
r2
r4

2 e
−λr2

}
.

Mathematica does these integrals nicely, giving λ8

6 ×
118

81λ7 . Following analagous
procedures, I find

〈1s1s| 1
r12
|1s1s〉 = 5λ

8

〈1s2s| 1
r12
|1s2s〉 = 17λ

34

〈1s2s| 1
r12
|2s1s〉 = 24λ

36

〈1s2p| 1
r12
|1s2p〉 = 59λ

35

〈1s2p| 1
r12
|2p1s〉 = 7·24λ

38 .

Setting λ→ Z, and then using Z = 3,

∆E1s22s =
5Z
8

+ 2
17Z
34
− 24Z

36
≈ 1.022Z ≈ 3.068.
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This contribution raises the energy, as one would expect for electron repul-
sion, and is a significant offset to the zeroth-order result E0 = −9Z2

8 = −81
8 .

When we have a 2p electron instead,

∆E1s22p =
5Z
8

+ 2
59Z
35
− 7 · 24Z

38
≈ 1.094Z ≈ 3.282.

In total,

(E0 + ∆E)1s22s ≈ −7.057
(E0 + ∆E)1s22p ≈ −6.843.

Confirming our intuition, the total E0 + ∆E has smaller magnitude for the
2p than the 2s case: The 2p electron is in a more ‘circular’ orbit, so it sees
less of the nuclear charge (i.e. it is screened more by the inner electrons).

f)

In our trial wavefunctions we replace Z with λ as above. The zeroth-order
single-particle contributions to the energy with this wavefunction are

〈1s| p
2

2m |1s〉 = λ2

2 , 〈2s| p
2

2m |2s〉 = 〈2p| p
2

2m |2p〉 = λ2

8 ,

〈1s|−Zr |1s〉 = −Zλ, 〈2s|−Zr |2s〉 = 〈2p|−Zr |2p〉 = −Zλ
4 ,

as you can easily compute. Thus

〈ψvar(1s22s)|H|ψvar(1s22s)〉 = 2
λ2

2
+
λ2

8
− 2Zλ− Zλ

4
+ 1.022λ,

the last being the ∆E contribution. Minimizing with respect to λ (and
taking Z=3) gives

λ ≈ Z − 4
9 · 1.022 ≈ 2.545,

Evar ≈ −7.289
(1s22s).

We find λ < Z, properly reflecting the screening effect of the electrons.
As with Helium, the variational energy counters the over-correction from
perturbation theory. Repeating for the 1s22p case,

λ ≈ 2.514,
Evar ≈ −7.110

(1s22p).
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