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1)

Path integrals with quadratic and lower polynomials in the exponent can be
computed exactly, and this is the standard example. A book by Feynman
and Hibbs is a good reference.

This path integral can be computed analagously to the one in the lec-
ture notes “Quantum Field Theory II (Bose Systems)”, the only significant
difference being that in single-particle quantum mechanics, the degree of
freedom x(τ) depends only on the (imaginary) time and not on space as do
the fields ψ(~x, τ). Consequently, there are no ~p modes to integrate over.

When you use cosines and sines in the mode expansion, there will be a
non-trivial Jacobian, which can be absorbed into the infinite constant. If
you want to be more careful, one way to determine its value is to compute
the path integral in the free-particle case and comparing the result with the
known free-particle green’s function.

Strictly speaking, you may find extra factors of β in your solution com-
pared to Prof. Murayama’s, which would seem to affect the thermodynam-
ics. Recall that the original path integral is defined in terms of two integrals,∫
Dx(t)Dp(t), but we usually do the p integral implicitly en route to writing

Z =
∫
Dx(t) e−S/~. If you go back and compute the p integral carefully, you

will find just enough β dependence in your result to cancel the extra factors
you find in doing the x integral.

2)

We want to “diagonalize” the Hamiltonian. When working with a and a†

operators this basically means trying to write it in the form H ∼ b†b where
[b, b†] = 1. Staring at this Hamiltonian for a few minutes shows that it can
be written

H = ~ω(a† +
V

~ω
)(a+

V ∗

~ω
)− V V ∗

~ω
,

and indeed [b, b†] = 1 for b = a+ V ∗

~ω and b† its complex conjugate. When b
and b† are adjoints and [b, b†] = 1, the states are determined uniquely to be
what you expect:

|gs〉, b†|gs〉, 1√
2!
b†b†|gs〉, . . . , (1)

where b|gs〉 = 0. All we need to do is find the local ground state |gs〉. We

know the coherent state |f〉 = e
−ff∗

2 efa
†

is an eigenstate of the operator a
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with eigenvalue f , so if we choose f = −V ∗

~ω ,

b |f = −V
∗

~ω
〉 = (a+

V ∗

~ω
) |f = −V

∗

~ω
〉 = 0.

So our ground state is the coherent state with f = −V ∗

~ω , the eigenstates are
given in (1), and the eigenvalues of the Hamiltonian are

En = ~ω − V V ∗

~ω
, n = 0, 1, 2 , . . . .

3)

Writing

b = a cosh η + a† sinh η, b† = a† cosh η + a sinh η,

[b, b†] = [a, a†] cosh2 η + [a†, a] sinh2 η = 1

when [a, a†] = 1.
Our given Hamiltonian is

H = ~ωa†a+
1
2
V (aa+ a†a†).

Adding another free parameter ξ and expanding in terms of a and a†,

ξb†b = ξ(a†a cosh2 η + a†a† cosh η sinh η + aa cosh η sinh η + aa† sinh2 η)
= ξ(a†a cosh 2η + (a†a† + aa) sinh 2η

2 + sinh2 η),

so to recover our Hamiltonian up to the constant ξ sinh2 η, we require

ξ sinh 2η = V, ξ cosh 2η = ~ω.

With a little bit of algebra you can find

ξ =
√

(~ω)2 − V 2, sinh2 η =
1
2

(
~ω√

(~ω)2 − V 2
− 1

)
,

and the Hamiltonian is

H =
√

(~ω)2 − V 2 b†b− 1
2
~ω +

1
2

√
(~ω)2 − V 2.

The eigenvalues can be read straight off.
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As many of you noted this only works for (~ω)2 > V 2, but anyway we
usually think of V as a perturbation. This system almost corresponds to the
lowest-order interacting Hamiltonian for a condensed bose gas as discussed
in the lecture notes “Quantum Field Theory II (Bose Systems)”. If we
change our toy model Hamiltonian to

H → ~ωa†a+
1
2
V (aa+ a†a† + 2a†a),

we have basically the zero-momentum version of eqn. (45) from the notes.
Our diagonalized toy Hamiltonian becomes

H →
√

(~ω + V )2 − V 2 b†b− 1
2
~ω +

1
2

√
(~ω + V )2 − V 2,

which describes toy phonon excitations. Indeed [b, b†] = 1 implies we have
bosons, and if we imagine ~ω ∼ p2

2m , the small-p expression for energy√
(~ω + V )2 − V 2 goes linear in p, the expected dispersion relation for sound

compressions. The problem with (~ω)2 < V 2 goes away.
For Hilbert space operators A, B, the Hausdorff formula reads

eB Ae−B = A+ [B,A] +
1
2!

[B, [B,A]] + . . . .

Barring mathematical niceties it is a clear consequence of Taylor expanding
and rearranging, which makes me wonder why Hausdorff’s (and sometimes
Baker’s or Campbell’s) name is on it. To check that b = UaU−1 for U =
e(aa−a†a†)η/2, use Hausdorff’s formula to write

b = a+ a†η + a
1
2!
η2 + . . . = a cosh η + a† sinh η.
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