
HW #9 Solutions (221B)

1)

This is a standard computation which can be found in most books on quan-
tum field theory, though perhaps in the context of the scalar Klein-Gordon
field.

H =
1

8π

∫
d~x ~E2 + ~B2.

Using ~E = −1
c
∂ ~A
∂t and plugging in the mode expansion for ~A, the ~E2 contri-

bution to the energy is∫
d~x ~E2 =

∫
d~x 1

c2
2π~c2

L3

∑
~p,~q,λ,λ′(−i)2√ω~pω~q (εiλ(~p)aλ(~p)ei~p·~x/~ − εiλ(~p)∗a†λ(~p)e−i~p·~x/~)

∗ (εiλ′(~q)aλ′(~q)e
i~q·~x/~ − εiλ′(~q)∗a

†
λ′(~q)e

−i~q·~x/~).

After multiplying out, rewrite∫
d~x ei(~p±~q)·~x/~ → (2π~)3δ3(~p± ~q)

∑
~q →

L3

(2π~)3

∫
d~q.

Then since ω−~p = ω~p, after carrying out the obvious integrals we have∫
d~x ~E2 = −

∑
~p 2π~ω~p

∑
λ,λ′(ε

i
λ(~p)aλ(~p)εiλ′(−~p)aλ′(−~p)− εiλ(~p)∗a†λ(~p)εiλ′(~p)aλ′(~p)

− εiλ(~p)aλ(~p)εiλ′(~p)
∗a†λ′(~p) + εiλ(~p)∗a†λ(~p)εiλ′(−~p)∗a

†
λ′(−~p)).

Now
εiλ(~p)εiλ′(−~p) = −δλ,λ′

εiλ(~p)∗εiλ′(~p) = δλ,λ′ ,

with analagous results for the other combinations (check simple cases). Then∫
d~x ~E2 =

∑
~p,λ 2π~ω~p (aλ(~p)aλ(−~p) + a†λ(~p)aλ(~p) + aλ(~p)a†λ(~p) + a†λ(~p)a†λ(−~p)).

The terms like aa and a†a† cancel with similar terms from ~B2 while the
other terms add. Including the 1/8π from the definition of energy,

H =
1

8π

∫
d~x ~E2 + ~B2 =

1
2

∑
~p,λ

~ω~p (a†λ(~p)aλ(~p) + aλ(~p)a†λ(~p)).
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Using [a, a†] = 1 gives the result

H =
∑
~p,λ

~ω~p (a†λ(~p)aλ(~p) +
1
2

).

2)

We consider the coherent state of photons with ~p = (0, 0, p) and helicity
λ = +.

|f, t〉 := e−f
∗f/2efe

−ic|~p|t/~a†+(~p)|0〉.

i~
∂

∂t
|f, t〉 = c |~p| fe−ic|~p|t/~a†+(~p)|f, t〉.

Since |f, t〉 is an eigenstate of the annihilation operator, aλ(~q)|f, t〉 =
δλ+δ~p~q fe

−ic|~p|t/~|f, t〉,

H |f, t〉 =
∑
~q,λ

c |~q| a†λ(~q)aλ(~q)|f, t〉 = c |~p| a†λ(~p) fe−ic|~p|t/~|f, t〉,

ignoring the zero point energy and using the delta functions to perform the
sums. Clearly i~ ∂∂t |f, t〉 = H |f, t〉. For another computation see p. 7 of the
notes on the quantized radiation field.

Again, |f, t〉 is an eigenstate of the annihilation operator and 〈f, t| is an
eigenstate of the creation operator so that

〈f, t| aλ(~q)|f, t〉 = δλ+δ~p~q fe
−ic|~p|t/~,

〈f, t| a†λ(~q)|f, t〉 = δλ+δ~p~q f
∗eic|~p|t/~.

The definition of ~A gives immediately

〈f, t| ~A|f, t〉 =

√
2π~c2

L3

1
√
ω~p

(~ε+(~p)fe−ip·x/~ + ~ε∗+(~p)f∗eip·x/~),

where p · x = c |~p| t− ~p · ~x is the Minkowski scalar product.
The coherent state expectation value reproduces a classical plane wave.

We can learn more about the quantum–classical correspondance by consid-
ering the energy in this wave:

Professor Murayama discussed how the probability distribution in par-
ticle number behaves for a coherent state: It is a Poisson distribution with
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mean n̄ = f∗f . So set f = n̄eiφ where φ is some phase. Then with
~ε+ = 1√

2
(1, i, 0),

〈 ~A〉 =
√

π~c2n̄
L3ω~p

{(e−ip·x/~+iφ + eip·x/~−iφ)x̂+ (ie−ip·x/~+iφ − ieip·x/~−iφ)ŷ}

=
√

4π~c2n̄
L3ω

{x̂ cos (~k · ~x− ωt+ iφ)− ŷ sin (~k · ~x− ωt+ iφ)},

where ~k = ~p/~ and ω = ω~p = c |~p|. Now ~E = −1
c
∂ ~A
∂t , and the energy density

U is U = 1
4π |〈 ~E〉|

2, which becomes

U =
1

4π
| ~E|2 =

1
L3
~ωn̄.

I was very excited the first time I saw this in Prof. Commins’s class because it
explains the transition between the frequency-based energy (~ω) of quantum
mechanics and the amplitude-based energy (|E|2) of classical electricity and
magnetism in exactly the way you’d hope. Each photon contributes ~ω to
the energy, and there are n̄ photons on average in the state. The amplitude
of the coherent state (which behaves like a classical wave) goes as

√
~ωn̄.

3)

The Hamiltonian H = −J
∑
~si · ~sj , or its close cousin H = −J

∑
sziszj

(called the Ising model), is the starting point for studies of phase transitions
and critical phenomena in statistical mechanics. In the case of the fer-
romagnet, the Hamiltonian derives from the effective spin-spin interaction
mediated by the Pauli principle, and not from the dipole-dipole interaction
of the electrons, which is sufficiently weak that I can’t find it discussed in
any quantum mechanics books. Given the size of corrections from the Dirac
treatment (e.g. spin-orbit) and hyperfine effects, I’m guessing the actual
electron dipole-dipole interaction is at least 104 times weaker than the ef-
fective spin-spin interaction.

Consider a two-electron subsystem. Working in the approximation of
single-particle wavefunctions, antisymmetry requires that

ψ(1, 2) = (u1(1)u2(2)± u1(2)u2(1))⊗
(
s = 0
s = 1

)
,

where ui are the spatial parts of the one-particle eigenfunctions and the an-
tisymmetric (s = 0) spin wavefunction is paired with the symmetric spatial
combination while symmetric (s = 1) spin go with antisymemtric spatial
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pieces. The Coulomb interaction between the two electrons contributes to
the energy,

〈ψ| 1
r12
|ψ〉 =

K

2
± J

2
,

where
K = 4〈u1(1)u2(2)| 1

r12
|u1(1)u2(2)〉

J = 4〈u1(1)u2(2)| 1
r12
|u1(2)u2(1)〉.

Explicitly,
〈 1
r12
〉s=0 = K

2 + J
2

〈 1
r12
〉s=1 = K

2 −
J
2 .

In this model of the ferromagnet, we assume the spins are confined to
lattice sites but still require antisymmetry of the wavefunction. Then the
energy between any two nearest neighbor pairs can be given solely in terms
of the common integrals J , K,

H =
K

2
− J(~s1 · ~s2)− J

4
.

Indeed, since

~s1 · ~s2 =
1
2

(s2 − s2
1 − s2

2) =
1
2

(s2 − 3/2),

the Hamiltonian takes values K
2 ±

J
2 for s = 0 and s = 1 (s2 = 1(1 + 1) = 2).

Dropping the constants K/2 − J/4 and summing over all nearest neighbor
pairs, we recover the Hamiltonian given in the problem set. The difference
between our Hamiltonian and the Ising Hamiltonian is that in our case,
there are three s = 1 states but only one s = 0 state, so three lower- and
one higher-energy eigenvalues for H. In contrast, the Ising Hamiltonian
∼
∑
sz1sz2 gives two states of lower energy and two states of higher energy.

It neglects the x and y components of the spins.
In this problem we are asked to consider the ferromagnet ground states.

As temperature decreases, the ferromagnet undergoes a second-order phase
transition from disordered to ordered state where the bulk of the spins are
aligned. The system undergoes “spontaneous symmetry breaking” in that
the aligned spins “choose” to point in one of many equivalent directions.
The ground state configuration breaks the original rotational symmetry of
the problem. This is entirely analogous to how a Bose condensate “chooses”
a particular phase θ for the field ψ, 〈ψ〉 =

√
ρeiθ, when it condenses. We

discussed in class how this choice of phase for the ground state breaks gauge
invariance when the ψ field describes Cooper pairs coupled to an E&M field
in a superconductor. The breaking of gauge invariance makes the photon act
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as if it has a mass mγ : magnetic fields are expelled from a superconductor
up to exponentially dying penetration which falls off with distance r as
e−mγcr/~.

a)

Work in units where ~ = 1. When all spins are up along the z axis,

~si · ~sj | ↑↑〉 = sxisxj + syisyj + sziszj | ↑↑〉 =
1
4

(| ↓↓〉 − | ↓↓〉+ | ↑↑〉) =
1
4
| ↑↑〉.

Therefore

H|0〉 = −J
∑
〈i,j〉

~si · ~sj |0〉 = −J
∑
〈i,j〉

1
4
|0〉 = E0|0〉.

b)

The system is rotationally invariant, so the Hamiltonian should commute
with the rotation operator. We can check this for the particular rotation
Ũ = ΠiU(θ) = e−iθ

∑
i syi :

[syi + syj , ~si · ~sj ] = [syi + syj , sxisxj + syisyj + sziszj ]
= −iszisxj − isxiszj + isxiszj + iszisxj = 0.

Commuting operators have commuting exponentials, so HŨ = ŨH; the
Hamiltonian is invariant under the rotation. This means that the new
ground state |0′〉 := Ũ |0〉 satisfies

HŨ |0〉 = ŨH|0〉 = E0Ũ |0〉,

so the rotated state is also a ground state, an equivalent “choice” for the
spontaneous symmetry breaking.

We want to check that the two ground states are orthogonal in the limit
N → ∞ where N is the number of spins. Consider a given spin which in
the ground state is in the state | ↑〉 =

(
1
0

)
. The rotation sends this to

| ↑′〉 =
(

cos θ2 − sin θ
2

sin θ
2 + cos θ2

)(
1
0

)
= cos

θ

2
| ↑〉+ sin

θ

2
| ↓〉.

Taking the inner product 〈0|0′〉 will give a product of factors 〈↑ | ↑′〉, one
for each spin. The factors are

〈↑ | ↑′〉 = 〈↑ |(cos
θ

2
| ↑〉+ sin

θ

2
| ↓〉) = cos

θ

2
.
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For N spins,

〈0|0′〉 = (cos
θ

2
)N .

For any non-zero rotation, the factor cos θ2 will be less than one. Thus as
N →∞, (cos θ2)N → 0.

c)

Let |m〉 = ΠiU(θi)|0〉. We want to compute 〈m|H|m〉 to O(θ2):

〈m|H|m〉 = 〈0|(1 + i
∑

i θisyi −
1
2

∑
ij θisyiθjsyj + . . .) ∗ H ∗

(1− i
∑

i θisyi −
1
2

∑
ij θisyiθjsyj + . . .)|0〉.

O(0) terms give the ground state energy, and O(θ) terms vanish because |0〉
is an energy eigenstate and 〈0|syi|0〉 = 0. The O(θ2) terms are

−1
2
〈0|
∑
ij

θisyiθjsyjH|0〉+〈0|
∑
i

θisyiH
∑
j

θjsyj |0〉−
1
2
〈0|H

∑
ij

θisyiθjsyj |0〉

= −1
2E〈0|

∑
ij θisyiθjsyj |0〉 + 〈0|

∑
ij θisyiθjsyjH|0〉

+ 〈0|
∑

i θisyi[H,
∑

j θjsyj ]|0〉 −
1
2E〈0|

∑
ij θisyiθjsyj |0〉

= 〈0|
∑
i

θisyi[H,
∑
j

θjsyj ]|0〉

=
J

8

∑
〈i,j〉

(θi−θj)2,

where the last sum runs over nearest-neighbor pairs. Therefore,

〈m|H|m〉 = E0 +
J

8

∑
〈i,j〉

(θi − θj)2 +O(θ3).
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