221B Lecture Notes

Notes on Spherical Bessel Functions

1 Definitions

We would like to solve the free Schrodinger equation
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R(r) is the radial wave function ¥ (Z) = R(r)Y;™(0,¢). By factoring out
h?/2m and defining p = kr, we find the equation
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A +1] R(p) = 0. (2)

The solutions to this equation are spherical Bessel functions. Due to some
reason, I don’t see the integral representations I use below in books on math-
emtical formulae, but I believe they are right.

The behavior at the origin can be studied by power expansion. Assuming
R o p™, and collecting terms of the lowest power in p, we get

nn+1)—=11+1)=0. (3)
There are two solutions,
n=1[ o —1[-—1. (4)

The first solution gives a positive power, and hence a regular solution at the
origin, while the second a negative power, and hence a singular solution at
the origin.
It is easy to check that the following integral representations solve the
above equation Eq. (B):
100
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By acting the derivatives in Eq. (B), one finds
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Therefore only boundary values contribute, which vanish both at ¢t = +1
and t = 00 for p = kr > 0. One can also easily see that hl(i)*(p) = hf (p*)
by taking the complex conjugate of the expression Eq. (B) and changing the
variable from ¢ to —t.

The integral representation Eq. (F) can be expanded in powers of 1/p.
For instance, for h;", we change the variable from ¢ to x by t = 1 + iz, and
find
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Similarly, we find
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Therefore both hl(i) are singular at p = 0 with power p=/=1.

The combination j,(p) = (h{") — h{™)/2i is regular at p = 0. This can be
seen easily as follows. Because hl(f) is an integral from ¢ = —1 to ‘o0, while
hl(ﬂ from t = +1 to ioco, the differencd between the two corresponds to an
integral from ¢t = —1 to ¢t = 700 and coming back to ¢t = +1. Because the
integrand does not have a pole, this contour can be deformed to a straight
integral from ¢t = —1 to +1. Therefore,
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In this expression, p — 0 can be taken without any problems in the inte%ral
+

and hence j; o< p!, i.e., regular. The other linear combination n; = (hl(Jr

hl(f))/2 is of course singular at p = 0.
It is useful to see some examples for low [.
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2 Asymptotic Behavior
: , : (=) :
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By taking linear combinations, we also find
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3 Plane Wave Expansion
The non-trivial looking formula we used in the class
e =3 "(20 + 1)i'jy(kr) Py(cos 0) (15)

=0

can be obtained quite easily from the integral representation Eq. (§). The
point is that one can keep integrating it in parts. By integrating ' factor
and differentiating (1 — ¢?)! factor, the boundary terms at t = 41 always
vanish up to [-th time because of the (1 — ¢2)! factor. Therefore,
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Note that the definition of the Legendre polynomials is

11 d .

Using this definition, the spherical Bessel function can be written as
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Then we use the fact that the Legendre polynomials form a complete set of
orthogonal polynomials in the interval ¢ € [—1, 1]. Noting the normalization

1 2
P,(t) Py, (t)dt = —— 1
[ PO Pu(t)dt = 5B, (19)

the orthonormal basis is P,(t)y/(2n + 1)/2, and hence

X 2n+1
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Pu(t)Po(t') = 6(t — t). (20)

n=0
By multipyling Eq. (I8) by P,(t')(2{ + 1)/2 and summing over n,
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n=1

By setting p = kr and ¢’ = cos 6, we prove Eq. ([F).
If the wave vector is pointing at other directions than the positive z-
axis, the formula Eq. ([[J) needs to be generalized. Noting Y;°(0,¢) =

(20 + 1) /47 P/(cos ), we find
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4 Delta-Function Normalization

An important consequence of the identity Eq. (B9) is the innerproduct of two
spherical Bessel functions. We start with

AT Te=RF — (90)36(k — I). 23
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Using Eq. (BZ) in the Lh.s of this equation, we find
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On the other hand, the r.h.s of Eq. (B3) is

(2m)S(F—F) = (2m)P g0 (kK8 0p) = (2m)° 10 (k—R)S(0-6)5(6—).
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(25)
Comparing Eq. (B4) and (B5) and noting
ZY’"* Y Q) = 0(Q — Qp), (26)
we find -~
/0 drr2jy(kr)ji(K'r) = m5(k K. (27)
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