
221B Lecture Notes
Notes on Spherical Bessel Functions

1 Definitions

We would like to solve the free Schrödinger equation

− h̄2

2m

[
1

r

d2

dr2
r − l(l + 1)

r2

]
R(r) =

h̄2k2

2m
R(r). (1)

R(r) is the radial wave function ψ(~x) = R(r)Y m
l (θ, φ). By factoring out

h̄2/2m and defining ρ = kr, we find the equation[
1

ρ

d2

dρ2
ρ− l(l + 1)

ρ2
+ 1

]
R(ρ) = 0. (2)

The solutions to this equation are spherical Bessel functions. Due to some
reason, I don’t see the integral representations I use below in books on math-
emtical formulae, but I believe they are right.

The behavior at the origin can be studied by power expansion. Assuming
R ∝ ρn, and collecting terms of the lowest power in ρ, we get

n(n+ 1)− l(l + 1) = 0. (3)

There are two solutions,

n = l or − l − 1. (4)

The first solution gives a positive power, and hence a regular solution at the
origin, while the second a negative power, and hence a singular solution at
the origin.

It is easy to check that the following integral representations solve the
above equation Eq. (2):

h
(±)
l (ρ) = −i(ρ/2)l

l!

∫ i∞

±1
eiρt(1− t2)ldt. (5)
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By acting the derivatives in Eq. (2), one finds[
1

ρ

d2

dρ2
ρ− l(l + 1)

ρ2
+ 1

]
h

(±)
l (ρ)

= −i(ρ/2)l

l!

∫ i∞

±1
(1− t2)l

[
l(l + 1)

ρ2
+

2(l + 1)it

ρ
− t2 − l(l + 1)

ρ2
+ 1

]
dt

= −i(ρ/2)l

l!

1

iρ

∫ i∞

±1

d

dt

[
eiρt(1− t2)l+1

]
dt. (6)

Therefore only boundary values contribute, which vanish both at t = ±1
and t = i∞ for ρ = kr > 0. One can also easily see that h

(±)∗
l (ρ) = h∓l (ρ∗)

by taking the complex conjugate of the expression Eq. (5) and changing the
variable from t to −t.

The integral representation Eq. (5) can be expanded in powers of 1/ρ.
For instance, for h+

l , we change the variable from t to x by t = 1 + ix, and
find

h
(+)
l (ρ) = −i(ρ/2)l

l!

∫ ∞
0

eiρ(1+ix)xl(−2i)l
(

1− x

2i

)l
idx

=
(ρ/2)l

l!
eiρ(−2i)l

l∑
k=0

lCk

∫ ∞
0

e−xρ
(
− x

2i

)l
xldx

=
eiρ

ρ

l∑
k=0

(−i)l−k(l + k)!

2kk!(l − k)!

1

ρk
. (7)

Similarly, we find

h
(−)
l (ρ) =

e−iρ

ρ

l∑
k=0

il−k(l + k)!

2kk!(l − k)!

1

ρk
. (8)

Therefore both h
(±)
l are singular at ρ = 0 with power ρ−l−1.

The combination jl(ρ) = (h
(+)
l −h

(−)
l )/2i is regular at ρ = 0. This can be

seen easily as follows. Because h
(−)
l is an integral from t = −1 to i∞, while

h
(+)
l from t = +1 to i∞, the differencd between the two corresponds to an

integral from t = −1 to t = i∞ and coming back to t = +1. Because the
integrand does not have a pole, this contour can be deformed to a straight
integral from t = −1 to +1. Therefore,

jl(ρ) =
1

2

(ρ/2)l

l!

∫ 1

−1
eiρt(1− t2)ldt. (9)
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In this expression, ρ→ 0 can be taken without any problems in the integral
and hence jl ∝ ρl, i.e., regular. The other linear combination nl = (h

(+)
l +

h
(−)
l )/2 is of course singular at ρ = 0.

It is useful to see some examples for low l.

j0 =
sin ρ

ρ
, n0 =

cos ρ

ρ
, h

(±)
0 =

e±iρ

ρ
, (10)

j1 =
sin ρ

ρ2
− cos ρ

ρ
, n1 =

cos ρ

ρ2
+

sin ρ

ρ
, h

(±)
1 =

(
1

ρ2
∓ i

ρ

)
e±iρ.

(11)

2 Asymptotic Behavior

Eqs. (7,8) give the asymptotic behaviors of h
(±)
l for ρ→∞:

h
(±)
l ∼ e±iρ

ρ
(∓i)n =

e±i(ρ−lπ/2)

ρ
. (12)

By taking linear combinations, we also find

jl ∼
sin(ρ− lπ/2)

ρ
, (13)

nl ∼
cos(ρ− lπ/2)

ρ
. (14)

3 Plane Wave Expansion

The non-trivial looking formula we used in the class

eikz =
∞∑
l=0

(2l + 1)iljl(kr)Pl(cos θ) (15)

can be obtained quite easily from the integral representation Eq. (9). The
point is that one can keep integrating it in parts. By integrating eiρt factor
and differentiating (1 − t2)l factor, the boundary terms at t = ±1 always
vanish up to l-th time because of the (1− t2)l factor. Therefore,

jl =
1

2

(ρ/2)l

l!

∫ 1

−1

1

(iρ)l

(
− d

dt

)l
eiρt(1− t2)ldt. (16)
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Note that the definition of the Legendre polynomials is

Pn(t) =
1

2

1

n!

dn

dtn
(t2 − 1)n. (17)

Using this definition, the spherical Bessel function can be written as

jl =
1

2

1

il

∫ 1

−1
eiρtPl(t)dt. (18)

Then we use the fact that the Legendre polynomials form a complete set of
orthogonal polynomials in the interval t ∈ [−1, 1]. Noting the normalization∫ 1

−1
Pn(t)Pm(t)dt =

2

2n+ 1
δn,m, (19)

the orthonormal basis is Pn(t)
√

(2n+ 1)/2, and hence

∞∑
n=0

2n+ 1

2
Pn(t)Pn(t′) = δ(t− t′). (20)

By multipyling Eq. (18) by Pl(t
′)(2l + 1)/2 and summing over n,

∞∑
n=1

2l + 1

2
Pl(t

′)jn(ρ) =
1

2

1

in

∫ 1

−1
eiρt

∞∑
n=0

Pl(t
′)Pl(t)dt =

1

2

1

in
eiρt

′
. (21)

By setting ρ = kr and t′ = cos θ, we prove Eq. (15).
If the wave vector is pointing at other directions than the positive z-

axis, the formula Eq. (15) needs to be generalized. Noting Y 0
l (θ, φ) =√

(2l + 1)/4π Pl(cos θ), we find

ei
~k·~x = 4π

∞∑
l=0

iljl(kr)
l∑

m=−l
Y m∗
l (θ~k, φ~k)Y

m
l (θ~x, φ~x) (22)

4 Delta-Function Normalization

An important consequence of the identity Eq. (22) is the innerproduct of two
spherical Bessel functions. We start with∫

d~xei
~k·~xe−i

~k′·~x = (2π)3δ(~k − ~k′). (23)

4



Using Eq. (22) in the l.h.s of this equation, we find∫
d~xei

~k·~xe−i
~k′·~x

=
∑
l,m

∑
l′,m′

(4π)2
∫
dΩ~xdrr

2Y m∗
l (Ω~k)Y

m
l (Ω~x)Y

m′∗
l′ (Ω~x)Y

m′

l′ (Ω~k′)jl(kr)jl′(k
′r)

=
∑
l,m

(4π)2
∫
drr2jl(kr)jl(k

′r)Y m∗
l (Ω~k)Y

m
l (Ω~k′). (24)

On the other hand, the r.h.s of Eq. (23) is

(2π)3δ(~k−~k′) = (2π)3 1

k2
δ(k−k′)δ(Ω~k−Ω~k′) = (2π)3 1

k2 sin θ
δ(k−k′)δ(θ−θ′)δ(φ−φ′).

(25)
Comparing Eq. (24) and (25) and noting∑

l,m

Y m∗
l (Ω~k)Y

m
l (Ω~k′) = δ(Ω~k − Ω~k′), (26)

we find ∫ ∞
0

drr2jl(kr)jl(k
′r) =

π

2k2
δ(k − k′). (27)
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