
Final Solutions

1. Consider the decay of the 2p state of hydrogen atom to the 1s state. Calculate
the amplitude of the decay for m = +1 state using plane waves for photons,
and explain the θ dependence of the amplitude for each helicity ±1 of the
final-state photon in terms of the angular momentum conservation. Show
that the rate is the same as the decay rate of the m = 0 state.

The only differences from the calculation in the lecture note “Quantum Field
Theory III (Radiation Field)” are: the matrix elements 〈1s| ~D|2p,m = ±1〉 and
the polarization vectors ~ελ(~q)

∗. (The complex conjugation is very important for
helicity eigenstates.) The matrix elements are
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Because Y 1
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survive integration over φ. The result of the integration is
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On the other hand, the polarization vectors for helicity±1 states are (Eqs. (16,17,18)
in the lecture note):
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〈f |V |i〉 =
i

h̄
|~q|
√

2πh̄c2

L3

1
√
ωq
~ε∗λ(~q) · 〈1s| ~D|2p,m = 1〉

=
i

h̄
|~q|
√

2πh̄c2

L3

1
√
ωq

(−e)128

243
a

(1, i, 0) · 1√
2

(± cos θ cosφ+ i sinφ,± cos θ sinφ− i cosφ,∓ sin θ)

=
i

h̄
|~q|
√

2πh̄c2

L3

1
√
ωq

(−e) 1√
2

128

243
a(1± cos θ)eiφ. (4)

The θ dependence has a simple interpretation in terms of angular momentum
conservation. The initial state has the angular momentum Jz = +1. When a
positive helicity photon is emitted along the negative z-axis, it carries away the
angular momentum Jz = −1, and hence the final state must have Jz = +2.



However, our final state is 1s and hence Jz = 0. Such a transition must be
forbidden. Indeed, (1 + cos θ) factor does that precisely. Only the other hand,
if the positive helicity photon is emitted along the positive z-axis, the angular
momentum conservation is satisfied. Since unit angular momentum should give
an amplitude linear in cos θ (in general higher j gives j-th order polynomials),
(1 + cos θ) is the only possible θ dependence. The argument for a negative helicity
photon is similar.

The rate is calculated in the same way as in Eq. (60),
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Note that you need to sum over helicities of the photon to obtain the total decay
rate of the 2p state. This result agrees completely with the decay orate of the
|2p,m = 0〉 state calculated in the lecture note, confirming the rotational invariance
of the result.

2. How can the 2s state decay to the 1s state? Do not calculate the rate, but
discuss it.

In multipole expansion, we saw that a photon carries angular momentum of
at least one. On the other hand, the initial and final state here both have zero
angular momentum. Therefore, the 2s state cannot decay to the 1s state by
emitting a single photon. When you were told that Lyman series of hydrogen
spectrum shows transitions between states with principal angular momentum n
and 1, you were cheated; n = 1 case shows only transitions between 2p and 1s,
but not 2s! Then how does the 2s state decay to the ground state? It has to emit
two photons. Note that an emission of two photons at the same time does not give
you a discrete spectrum. Only the sum of two photon energies is constrained. The
dominant contribution is the emission of two photons both in the E1 multipole
(electric dipoles) where the angular momenta of both photons cancel and hence
they are in the J = 0 configuration. Angular momentum consideration suggests
the combination |k10, k10〉+ 2|k11, k1− 1〉.



Then the next question is how can two photons be emitted. There are two
possibilities. One is to use the term

V =
(
e

c

)2
~A(~x)2 (6)

in the Hamiltonian. However, using the expression for the electric dipole photon
Eq. (86) in the lecture note, the matrix is 〈1s|2s〉 which vanishes identically. Then
we have to go to higher order in kr for the electric dipole mode function ~uEk10.
Another possibility is to use the operator we’ve been using

V = −e
c
~p · ~A(~x) (7)

twice. The transition element is then

〈1s+two photons|V 1

E2s −H0

V |2s〉 =
∑
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E2s − Ei
〈i|V |2s〉.

(8)
The perturbation Hamiltonian V on the left creates the intermediate states, |2p+
photon〉 (or any other |np〉 state), while that on the right creates another photon
making transition to the 1s state. You then have to sum over all intermediate
states.

Order of magnitude of the process can be easily be estimated by neglecting all
numerical factors but by keeping dependences on the physical constants. We have
seen that dipole transition matrix elements 〈f |V |i〉 go as ∼ ea0E

1/2
γ L−3/2. Then

the transition element Eq. (8) goes as
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Similarly, the contribution from the term Eq. (6) can be shown to be of the same
order of magnitude. The rate goes as square of this: a6

0E
2
γL
−6. The phase space

integral summing over two final state photons goes as (L3q3/h̄3)2 ∼ L6E6
γ/(h̄c)

6.
Here I made an approximation that two photon energies are comparable. This
is indeed the case because the phase space E3

1E
3
2 , subject to the constraint that

E1 +E2 is fixed, is maximized when E1 ∼ E2. Together with the delta function in
energy and 1/h̄ in Fermi’s golden rule, the estimate of the decay rate is a6

0E
7
γ/h̄

7c6 '
α8mc2/h̄. On the other hand, the dipole transition rate for 2p→ 1s is α5mc2/h̄ up
to numerical factors. Therefore, the decay rate of 2s→ 1s is roughly α3 ' 4×10−7

smaller.
A detailed calculation shows that the decay rate is very small: 8.229 sec−1,

even another order of magnitude smaller than the above rough estimate due to
numerical factors. This is smaller than the dipole transition from 2p to 1s by eight
orders of magnitude! The 2s state is hence said to be metastable.



You may think that the 2s state decays into 2p state first, which is lower than
the 2s state because of the Lamb shift, and then decays into 1s state, rather than
going through quantum intermediate states as in Eq. (8) or emitting two photons
directly from the operator Eq. (6). Recalling that the decay rate due to electric
dipole transition is proportional to the energy of the photon to the cube power,
and knowing that the decay rate we calculated for 2p → 1s was 6.27 × 108sec−1,
we can estimate the order of magnitude of the decay rate of 2s to 2p due to the
Lamb shift. The level splitting is about 1 GHz in frequency. The energy of the
photon then is hν ' 4.1× 10−6 eV. On the other hand, the energy of the photon
in the 2p→ 1s decay is 13.6× (1−1/4) eV. Therefore the 2s→ 2p decay gives the
energy of the photon 4.1× 10−7 time smaller than 2p→ 1s, and hence the decay
rate is suppressed by (4.1× 10−7)3 = 6.7× 10−20. This is indeed very small! What
it means is that the decay of 2s state going through the 2p state is possible, but
this decay is limited by the slowness of 2s → 2p transition and the two photon
transition discussed above is far more important.

Finally, once you consider the spin of the electron (not required in this prob-
lem), the decay 2s1/2 → 1s1/2 allows even parity j = 1 photon: an M1 transition.
However, as we see in Problem 3, the M1 transition causes only the spin flip and
does not change the spatial wave function at the leading order in kr. Hence the
amplitude picks up higher order in the Taylor expansion in the spherical Bessel
function j1(kr), which is (kr)3 compared to kr of the leading term. Recall that the
M1 is already one order higher in kr compared to the E1. Therefore there is an
overall (kr)3 suppression in the amplitude, and hence (kr)6 in the rate compared
to the E1 transition rate. Because k ∼ α2mc/h̄ for the typical photon wave vector
from the atomic transitions and r ∼ a0 = h̄/(αmc), kr ∼ α. This leads to a factor
of α6 suppression in the rate relative to the E1 case, and hence negligible compared
to the two-photon process.

In this decay, therefore, two photons are emitted promptly, giving vanishing
total angular momentum. This is the ideal system for testing Einstein–Podolsky–
Rosen paradox and Bell’s inequality and had been used for that purpose.

Table 1: Comparison of Theoretical and Experimental Total Decay Rates of the
2s1/2 State (in s−1). Taken from G.W.F. Drake, in “The Spectrum of Atomic
Hydrogen Advances,” edited by G. W. Series, World Scientific, 1988.

Ion Theory Experiment
He+ 526.61 525± 5
O7+ 2.1552× 106 (2.21± 0.22)× 106

F8+ 4.3699× 106 (4.22± 0.28)× 106

S15+ 1.3964× 108 (1.37± 0.13)× 108

Ar17+ 2.8590× 108 (2.868± 0.029)× 108



I could not find experimental data on the 2s lifetime for hydrogen, except the
statement that it is very difficult to measure because of its too small decay rate
(or too long lifetime). Instead, I found comparison between theory and data for
hydrogen-like atoms. Following the analysis above with Z > 1, the two E1 photon
emission process scales as Z6, while one M1 photon emission as Z10. At some
point, the M1 emission catches up. Here is a table that compares theory and
experiment. For Ar, the data is sufficiently accurate to be sensitive to the small
M1 contribution of 0.0908× 108 s−1.

3. The coupling of the magnetic moment to the magnetic field V = −~µ · ~B
can also cause transitions. (One such example is the hyperfine transition
in hydrogen atom.) By expanding the Hamiltonian in multipoles, show that
emission or absorption of a photon can change the spin state by M1 transi-
tions.

The expression for ~uMk10 is given in Eq. (84). Other m = ± states can also easily
be calculated.
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The next step is to calculate the magnetic field ~B for the magnetic dipole compo-
nent. Using Eq. (76), the magnetic dipole component is
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∑
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where h.c. stands for hermitian conjugate.
Finally, we substitute the magnetic field in the operator

H = −~µ · ~B = −g eh̄
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we find
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Clearly, one can, for instance, emit a M1 photon with m = 1 with the creation
operator aM†k11 while lowering the spin by s− conserving the angular momentum of
the system. This operator can cause a transition from the triplet state |e↑p↑〉 to the
singlet state |e↓p↑〉 in the hyperfine transition, giving rise to 21cm line important
for astronomy. Because of the small level splittings in the hyperfine transition
∆Ehf = (hc/λ) = 5.9 × 10−6 eV, even a very cold gas can emit it. In fact, there
are 2.725K comsic microwave background anywhere in the Universe, which can
excite the atom to the triplet state because kT = 2.3 × 10−4 eV � ∆Ehf . For
instance, the rotational speed of hydrogen gas in the outer region of galaxies is
determined using the Dopper shifts in 21cm line. The fact that the rotational speed
is much larger than the estimate based on the luminous matter (stars) within the
given radius is the best evidence for the existence of dark matter in galactic halo.

Note that, at the leading order in kr we had kept, the operator does not depend
on the electron variables except spin, and hence does not affect the spatial wave
function of the electron.

The expansion of (~p− e
c
~A)2/2m also gives the coupling of the magnetic field to

the orbital angular momentum. Therefore the M1 transition can cause transitions
among different Lz = mh̄ states in a given l multiplet. Transitions among split
Zeeman levels can occur this way.

4. The relativistic field equation for a spinless particle in the presence of the
Maxwell field is(−ih̄1

c
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φ = 0. (16)

Answer the following questions.

(a) We would like to determine energy eigenvalue E in the presence of
Coulomb potential eA0 = Ze2

r
. Show that time-independent field equa-

tion for the radial wave function φ = R(r)Y m
l e
−iEt/h̄ has the form[
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R = εR. (17)

Write µ, λ, ε in terms of E, m, and l.

The field equation for φ = R(r)Y m
l e
−iEt/h̄ is 1
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By reorganizing terms, we find[
h̄2c2

2E
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+
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]
R =
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α = e2/h̄c is the fine-structure constant. By comparing to the Schrödinger-like
equation Eq. (17), we find

µ = E/c2 (20)

λ =

√(
l +

1

2

)2

− Z2α2 − 1

2
(21)

ε =
E2 − (mc2)2

2E
. (22)

4. (b) Eq. (17) has exactly the same form as the Schrödinger equation for the
hydrogen atom, except that λ is not an integer. Therefore the boundstate
eigenvalues are given by

ε = −1

2

Z2α2µc2

ν2
,

where the “principal quantum number” ν takes values ν = λ + 1, λ +
2, λ+ 3, · · ·. Solve for E.

Using the result from the previous problem,

E2 − (mc2)2

2E
= −1

2

Z2α2E

ν2
. (23)

Solving for E, we find

E =
mc2√

1 + Z2α2/ν2
. (24)

4. (c) Expand E up to O(Z2α2) and show that it agrees with the result of
conventional Schrödinger equation including the rest energy.

By expanding Eq. (24) up to O(Z2α2), we find

E = mc2

(
1− 1

2

Z2α2

ν2
+O(Z4α4)

)
. (25)

Note that λ = l + O(Z2α2). Therefore, ν = λ + k (k is a non-negative integer)
and hence ν is also an integer up to an O(Z2α2) correction. Neglecting O(Z4α4)
terms, we find the principal quantum number n = ν +O(Z2α2) and hence

E = mc2 − 1

2

Z2α2mc2

n2
+O(Z4α4). (26)

The result agrees with conventional Schrödinger equation at this order.



4. (e) Expand E up to O(Z4α4), and discuss the interpretation of the correc-
tion.

We this expand expand E in Eq. (24) up to O(Z4α4), and find

E = mc2

(
1− 1

2

Z2α2

ν2
+

3

8

Z4α4

ν4
+O(Z6α6)

)
. (27)

The difference between ν and n at O(Z2α2) cannot be ignored in the second term
because it gives rise to a term of O(Z4α4). By expanding λ up to O(Z2α2),

λ = l − Z2α2

2l + 1
+O(Z4α4), (28)

we can write

ν = n− Z2α2

2l + 1
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and hence
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)
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As before, the second term is the term we obtain in non-relativistic Schrödinger
equation.

The question is what are the next two terms. They are the so-called “relativistic
correction,” obtained by expanding the relativistic kinetic energy

√
~p2c2 + (mc2)2 = mc2 +

~p2

2m
− 1

8

(~p2)2

m3c2
+O(~p6). (31)

Because |~p|/m = v = Zα in hydrogen-like atoms, O(~p6) ∼ O(Z6α6) and these
terms are beyond our interest. We can rewrite

~p2|nlm〉 = 2m

(
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r
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)
, (32)

and hence
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〈nlm|

(
Ze2

r
− 1

2

Z2α2mc2

n2

)2

|nlm〉. (33)

Using (see below for the derivation of these expectation values)

〈nlm|1
r
|nlm〉 =

1

n2a
, 〈nlm| 1

r2
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2

(2l + 1)n3a2
, (34)



with a = h̄2/mZe2 = h̄/mcZα, we find

〈nlm| − 1

8

(~p2)2

m3c2
|nlm〉 = − Z4α4

(2l + 1)n3
+

3

8

Z4α4

n4
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This precisely reproduces the O(Z4α4) terms in Eq. (24), and hence the relativistic

correction−1
8

~p4

m3c4
is their origin. Obviously, there is no spin-orbit coupling because

the Klein–Gordon field does not have spin. What is more interesting is that there
is no Darwin term; the Klein–Gordon particle does not do Zitterbewegung! In
fact, if you take the square root of the Klein–Gordon equation and consider the
Hamiltonian to be H =

√
c2~p2 +m2c4, the Heisenberg equation would give the

velocity ~̇x = [~x,H]/ih̄ = c2~p/
√
c2~p2 +m2c4 which is perfectly normal, showing no

sign of Zitterbewegung.
The energy levels of the Klein–Gordon equation in the Coulomb potential is

the starting point for the study of π-mesic atoms, i.e, the bound states of negative
pions π− to nuclei.

The following derivations are by Ed. Thank you, Ed! We can derive Eq. (34)
without suffering through generating functions for Laguerre polynomials by using
the Feynman-Hellman theorem which states

〈ψ|∂H
∂λ
|ψ〉 =

∂E

∂λ
, (36)

quite generally when a Hamiltonian H, its eigenstates |ψ〉, and its eigenvalues E
depend on a parameter λ. (The eigenstates if degenerate must be diagonalized not
to mix under infinitessimal changes in λ.) To show equation (36) start with

∂

∂λ
(H|ψ〉) =

∂

∂λ
(E|ψ〉) (37)

∂H

∂λ
|ψ〉+H

∂

∂λ
|ψ〉 =

∂E

∂λ
|ψ〉+ E

∂

∂λ
|ψ〉, (38)

and act on the left with 〈ψ|. Then 〈ψ|H = 〈ψ|E so that the unwanted terms drop
out:

〈ψ|∂H
∂λ
|ψ〉+ E〈ψ| ∂

∂λ
|ψ〉 = 〈ψ|∂E

∂λ
|ψ〉+ E〈ψ| ∂

∂λ
|ψ〉 =⇒ (39)

〈ψ|∂H
∂λ
|ψ〉 =

∂E

∂λ
. (40)

Now for the non-relativistic hydrogen atom,

H =
h̄2

2m

(
− d2

dr2
− 2

r

d

dr
+
l(l + 1)

r2

)
− Ze2

r
, (41)

E = −Z
2α2mc2

2n2
. (42)



Mathematically, we can consider Z to be a continuous parameter and apply the
Feynman-Hellman theorem,

〈nlm|1
r
|nlm〉 = − 1

e2
〈nlm|∂H

∂Z
|nlm〉 = − 1

e2

∂E

∂Z
=

1

e2

Zα2mc2

n2
=

1

n2a
, (43)

which is the first of (34). To find the second relation we can basically repeat the
above argument with l in place of Z, but there is one subtlety. For the Hamil-
tonian (41), the radial eigenvalue problem is well-defined even for non-integer l.
But when solving for the radial wavefunction, we find a principle quantum number
n = nr + l + 1 where nr = 0, 1, 2, . . . must be an integer for the hypergeometric
series to terminate and give a normalizable radial wavefunction. When we differ-
entiate with respect to l we must hold nr, not n, fixed. In other words, ∂n

∂l
= 1.

Then

〈nlm| 1
r2
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2m

h̄2(2l + 1)
〈nlm|∂H

∂l
|nlm〉 (44)

=
2m
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∂E

∂l
(45)

=
2m

h̄2(2l + 1)

2Z2α2mc2

2n3

∂n

∂l
(46)

=
2

(2l + 1)n3a2
. (47)

Now that you have seen how to obtain the energy levels for the Klein–Gordon
equation, you must be wondering what we do for the Dirac equation. Here is how
you do it. Starting from the Dirac equation[

E +
Ze2

r
− c~α · ~p−mc2β

]
ψ = 0, (48)

multiply by [
E +

Ze2

r
+ c~α · ~p+mc2β

]
(49)

from the left. Then you find(E +
Ze2

r

)2

− c2~p2 − (mc2)2 + c~α ·
(
−ih̄~∇Ze

2

r

)ψ = 0. (50)

The anti-commutation relation {αi, αj} = 2δij, {αi, β} = 0 had been used in
simplifying the expression. Writing out the derivative acting on the Coulomb
potential, we find(E +

Ze2

r

)2

− c2~p2 − (mc2)2 + ih̄c~α · ~̂rZe
2

r2

ψ = 0, (51)



using the notation ~̂r = ~r/r. At this point, we also rewrite ~p2 using the spherical
coordinates,(E +

Ze2

r

)2

+ c2h̄2

(
1

r

d2

dr2
r − l(l + 1)

r2

)
− (mc2)2 + ih̄c~α · ~̂rZe

2

r2

ψ = 0. (52)

We can block-diagonalize the matrix ~α as

~α =

(
0 ~σ
~σ 0

)
−→

(
~σ 0
0 −~σ

)
. (53)

Then depending on upper or lower two components, we have ~α · ~̂r = ±~σ · ~̂r. Then
the equation becomesE2 − (mc2)2 + 2E

Ze2

r
+ c2h̄2

1

r

d2

dr2
r − l(l + 1) + Z2α2 ± iZα~σ · ~̂r

r2

ψ = 0.

(54)
The non-trivial point with this equation is to deal with the numerator l(l + 1) +

Z2α2±iZα~σ ·~̂r. The trick is to note that it commutes with ~J = ~L+~σ/2. Therefore,
we can look at the subspace of the Hilbert space with fixed j and hence l = j±1/2.
On this space, the numerator has the form

l(l + 1) + Z2α2 ± iZα~σ · ~̂r =

(
(j + 1

2
)(j + 3

2
) + Z2α2 ∓iZα

∓iZα (j − 1
2
)(j + 1

2
) + Z2α2

)
.

(55)
The eigenvlaues of this matrix are easily obtained, but we intentionally write the
eigenvalues as λ(λ + 1). The motiation to do so must be clear from what we did
with the Klein–Gordon equation. The two solutions are

λ+ =

[(
j +

1

2

)2

− Z2α2

]1/2

, λ− =

[(
j +

1

2

)2

− Z2α2

]1/2

− 1. (56)

Using λ, the Dirac equation is now[
E2 − (mc2)2 + 2E

Ze2

r
+ c2h̄2

(
1

r

d2

dr2
r − λ(λ+ 1)

r2

)]
ψ = 0. (57)

It has the same form as the Klein–Gordon equation except λ. By following the
same arguments, we find the energy eigenvalues

E =
mc2√

1 + Z2α2/ν2
, (58)



with ν = λ + 1, λ + 2, · · ·. The solutions with both λ+ and λ− give the same set
of ν’s, except that the smallest ν is obtained only from λ− with j = 1/2. This
corresponds to the fact that n = 1 state has only l = 0 which does not mix with
an l = 1 state. The degeneracy of the eigenvalues for two solutions is split only by
Lamb shift. The principal quantum number is ν at the lowest order in Zα, and
hence

ν = n+

[(
j +

1

2

)2

− Z2α2

]1/2

−
(
j +

1

2

)
. (59)

We finally find the energy levels of the Dirac equation

E = mc2

[
1 +

Z2α2

n− (j + 1/2) + [(j + 1/2)2 − Z2α2]1/2

]−1/2

. (60)


