
221B Lecture Notes
Steepest Descent Method

1 Gamma Function

The best way to introduce the steepest descent method is to see an example.
The Stirling’s formula for the behavior of the factorial n! for large n is

n! ∼
√

2πnnne−n (1)

which can be obtained from the integral representation of the Gamma func-
tion using the steepest descent method.

1.1 How to do it

The Gamma function is defined by

Γ(x) =
∫ ∞

0
dttx−1e−t. (2)

For the integer arguments, the Gamma function becomes a factorial, Γ(n) =
(n− 1)!. Therefore we should study Γ(n+ 1) = n!

n! =
∫ ∞

0
dttne−t. (3)

The point is that the integrand tne−t is peaked at some value of t (see below)
and its form can be approximated by a Gaussian if n is large. To see this,
let us first write it as

n! =
∫ ∞

0
dte−t+n ln t. (4)

The exponent f(t) = −t+n ln t is at its maximum where f ′(t) = −1+n/t = 0,
or t = n. We can expand the exponent around the maximum up to the second
order

f(t) = −n+n lnn+
1

2
f ′′(n)(t−n)2+O(t−n)3 = −n+n lnn+

1

2n
(t−n)2+O(t−n)3.

(5)
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Let us ignore the terms of O(t − n)3 and above. We will come back to the
question when it is a good approximation afterwards. Then the integral is
given by

n! '
∫ ∞

0
dte−n+n lnn+ 1

2n
(t−n)2

. (6)

Because the Gaussian integral is around t = n and the standard deviation√
n, we can extend the integration region to −∞ to ∞ with negligible error

for large n. Then we find

n! ' e−n+n lnn
√

2πn =
√

2πnnne−n, (7)

which is nothing but the Stirling’s formula Eq. (1).

1.2 Is it good?

To see if this is a good approximation, let us redo the calculation more
carefully. Because we are expanding around t = n, change the variable to s
by t = n(1 + s) in Eq. (4), and we find

n! =
∫ ∞
−1

e−n(1+s)+n lnn(1+s)nds = nn+1e−n
∫ ∞
−1

e−n(s−ln(1+s))ds. (8)

The exponent is expanded as

− n(s− ln(1 + s)) = −n
∑
k=2

(−1)k

k
sk. (9)

So far everything is exact.
Now there are two approximations we make. One is to keep only the

second power in s, and the other is to extend the integration region to the
entire real axis.

The first approximation to keep only the second power in s in the expo-
nent is justified as follows. The correction to this approximation is in the
higher powers in s in Eq. (9). Assuming that the Gaussian integral is done,
how big are these terms? Because the standard deviation in s is 1/

√
n, the

k-power term (−1)ksk/k is estimated as roughly 1/nk/2, which is suppressed
relative to the leading term s2 ∼ 1/n for large n.

The second approximation is to extend the integration region. Again for
large n, the Gaussian factor is already quite damped at s = −1 already as e−n.
Therefore extending the integration region induces only an exponentially
suppressed error.

In all, both approximations are justified for large n� 1.
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2 Spherical Bessel Function

Here is another example. We use the large l behavior of the spherical Bessel
function in HW #3. We can obtain the behavior from the integral represen-
tation

jl(ρ) =
1

2

(ρ/2)l

l!

∫ 1

−1
eiρt(1− t2)ldt. (10)

As we did for the Gamma function, we rewrite it first as

jl(ρ) =
1

2

(ρ/2)l

l!

∫ 1

−1
eiρt+l ln(1−t2)dt. (11)

The exponent
f(t) = iρt+ l ln(1− t2) (12)

is stationary at

f ′(t) = iρ+ l
−2t

1− t2
= 0, (13)

or

t = i
1

ρ

(
l ±
√
l2 − z2

)
. (14)

Here we assumed that l > z. Both extrema are on the positive imaginary
axis. We are interested in the behavior when l > ρ� 1.

Let us now study the second derivative

f ′′(t) = l
−2t(1− t2)− 4t2

(1− t2)2
=


− ρ2

√
l2−ρ2

(l−
√
l2−ρ2)l

t = i1
ρ

(
l −
√
l2 − z2

)
ρ2
√
l2−ρ2

(l+
√
l2−ρ2)l

t = i1
ρ

(
l +
√
l2 − z2

) (15)

The extremum at t = i1
ρ

(
l −
√
l2 − z2

)
is close to the real axis and the

direction of the “steepest descent” from the extremum is parallel to the
real axis. Therefore we can deform the integration contour from −1 to 1
a little bit upwards on the complex plane to pass through this extrememum
parallel to the real axis, and pick up the Gaussian integral. However, the
other extremum t = i1

ρ

(
l +
√
l2 − z2

)
is higher above the other extremum,

and the direction of the “steepest descent” is along the imaginary axis. We
cannot deform the contour smoothly to pick up the Gaussinan integral along
the imaginary axis. Therefore, we pick only the first extremum but not the
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second one. Then we can do Gaussian integral by extending the integration
region to infinite and find

jl(ρ) ' 1

2

1

l!
e−l+
√
l2−ρ2

(
l(l −

√
l2 − ρ2)

ρ

)l (
2πl(l −

√
l2 − ρ2)

ρ2
√
l2 − ρ2

)1/2

(16)

If the Stirling’s formula is used further for l!, it simplifies to

jl(ρ) ' 1

2
e
√
l2−ρ2

(
l −
√
l2 − ρ2

ρ

)l (
l −
√
l2 − ρ2

ρ2
√
l2 − ρ2

)1/2

=
1

2
e
√
l2−ρ2

(
ρ

l +
√
l2 + ρ2

)l (
1√

l2 − ρ2(l +
√
l2 − ρ2)

)1/2

(17)

To obtain a similar asymptotic behavior for nl, we need to go to the
integral representation

h
(±)
l (ρ) = −i(ρ/2)l

l!

∫ i∞

±1
eiρt(1− t2)ldt. (18)

We rewrite it as

h
(±)
l (ρ) = −i(ρ/2)l

l!

∫ i∞

±1
eiρt+l ln(1−t2)dt. (19)

The extrema and the second derivatives are the same as before, Eqs. (14) and
(15), respectively. The only difference now is that we can pick the extremum
with plus sign along the imaginary axis, while we can pick only a half of the
extremum with the negative sign, which gives the asymptotic behavior for jl.
In other words, the extremum with the plus sign is what gives nl. Therefore

nl(ρ) ' −i(ρ/2)l

l!

∫
eiρt+l ln(1−t2)dt, (20)

where the integral is done along the imaginary axis around the extremum
t = i1

ρ

(
l +
√
l2 − ρ2

)
. The result is then

nl(ρ) ' −i 1
l!
e−(l+

√
l2−ρ2

(
l(l +

√
l2 − ρ2)

ρ

)l (
2πl(l +

√
l2 − ρ2)

ρ2
√
l2 − ρ2

)1/2

i, (21)

and again using Stirling’s formula for l!,

nl(ρ) ' e−
√
l2−ρ2

(
l +
√
l2 − ρ2

ρ

)l (
l +
√
l2 − ρ2

ρ2
√
l2 − ρ2

)1/2

. (22)
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When l� ρ, expressions Eq. (17,22) can be further simplified to

jl(ρ) ' 1

2
√

2l

(
eρ

2l

)l
, (23)

nl(ρ) '
√

2

ρ

(
2l

eρ

)l
. (24)

Clearly nl(ρ)� jl(ρ).

3 Airy Function

Airy function is a solution to the equation(
d2

dx2
− x

)
Ai(x) = 0. (25)

An integral representation of the solution is

Ai(x) =
1

2π

∫ ∞
−∞

ei(t
3/3+xt)dt. (26)

Note that the integration contour can be deformed from the real axis to a
path starting somewhere in the 3rd sextant 2π/3 < arg t < π to the 1st
sextant 0 < arg t < π/3.

The behavior for large x can be obtained by the steepest descent method.
The exponent

f(t) = i

(
t3

3
+ xt

)
(27)

is extremum at
f ′(t) = i(t2 + x) = 0 (28)

or
t = ±

√
−x. (29)

When x > 0, only the extremum at t = i
√
x is naturally on the contour.

Indeed, f ′′(t) = 2it = −2
√
x has the steepest descent along the contour

paralell to the real axis, while the extremum at t = −i
√
x has the steepest

descent along the imaginary axis. Therefore, we pick only the extremum
t = i

√
x and find

Ai(x) ' 1

2π

∫
e−

2
3
x3/2−

√
x(t−i

√
x)2

=
1

2

(
1

π
√
x

)1/2

e−
2
3
x3/2

. (30)
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On the other hand, when x < 0, the extrema are at t = ±
√
−x, and both of

them are naturally on the contour. At t = −
√
−x, the exponent is expanded

as

f(t) = −i2
3
x
√
−x− i

√
−x(t+

√
−x)2, (31)

and hence the steepest descent is tilted by 45 degrees. Changing the variable
by

t+
√
−x = e−iπ/4y, (32)

the contribution of this extremum to the Airy function is

1

2π

∫
e−i

2
3
x
√
−x−

√
−xy2

e−iπ/4dy =
1

2
e−iπ/4

(
π√
−x

)1/2

e−i
2
3
x
√
−x. (33)

Similarly, the contribution from the extremum t =
√
−x can be obtained

using the steepest descent direction

t−
√
−x = eiπ/4y, (34)

and we find

1

2π

∫
ei

2
3
x
√
−x−

√
−xy2

eiπ/4dy =
1

2
eiπ/4

(
π√
−x

)1/2

ei
2
3
x
√
−x. (35)

Adding Eqs. (33) and (35), we find

Ai(x) '
(

1

π
√
−x

)1/2

cos
(

2

3
x
√
−x+

π

4

)
. (36)

The differential equation Eq. (25) has another linearly independent solu-
tion. It is given in terms of the same integral along a different contour. One
choice for the contour is C1 from the 5th sextant 4π/3 < arg t < 5π/3 to the
1st sextant, or similarly C2 from the 5th sextant to the 3rd sextant. We take
the combination

Bi(x) =
−i
2π

[∫
C1

ei(t
3/3+xt)dt+

∫
C2

ei(t
3/3+xt)dt

]
(37)

as the linearly independent solution. For x < 0 case, the extrema picked
up on these contours are the same as Ai(x), but their relative sign is the
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opposite. On the other hand, for x > 0 case, we pick the different extremum
t = −i

√
x along the imaginary axis. In the end we find

Bi(x) '
(

1

π
√
x

)1/2

ex
3/2

(x� 0)

'
(

1

π
√
−x

)1/2

sin
(

2

3
x
√
−x+

π

4

)
(x� 0). (38)
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