
Midterm Exam (221B), due Mar 22, 5pm

1. Use Thomas–Fermi model of atoms to answer the following questions.

(a) Solve the differential equation numerically for neutral atoms and obtain
a plot of Thomas–Fermi function χ(x) for x < 20.

(b) Based on this result, argue why higher l orbitals have higher energies
with a given principal quantum number n.

(c) Calculate the total binding energy of an atom.

(d) Show that the “radius” of atoms depends only weakly on Z, consistent
with the empirical fact. The radius is naively infinite in this model
because the charge density extends smoothly to infinity. Define the
radius R instead to contain Z − 1 electrons

Z − 1 =
∫ R

0
4πr2drρ(r). (1)

Plot R in Å as a function of Z.

2. Consider a nucleus as a sphere with a uniform charge density.

(a) Calculate the Rutherford scattering cross section of an electron by a
nucleus together with the form factor using the first Born approxima-
tion.

(b) Comparing it to the data in J. B. Bellicard et al, Phys. Rev. Lett., 19,
527 (1967), estimate the size of Calcium nuclei, using the location of
dips in the cross sections.

(c) Comparing it to the data in J. B. Bellicard et al, Phys. Rev. Lett., 19,
242 (1967), estimate the size of lead nuclei, using the location of dips
in the cross sections.

(d) Discuss A dependence of the size of nuclei.

Note Even though the electrons used in these experiments are relativistic, it
is still true that the form factor is the Fourier transform of the charge
density to the extent that we ignore the nuclear recoil. Be careful,
however, to use the electron momentum and energy with the relativistic
formula E = cp, and regard the form factor a function of momentum
trasnfer q2 = 2p2(1− cos θ).

3. Interatomic potential in a diatomic molecule can be well approximated by
Morse potential,

V (r) = V0(e
−2(r−r0)/b − 2e−(r−r0)/b), (2)



where r is the distance between two nuclei. It turns out that energy levels
can be obtained exactly for the bound states with this potential. Consider
only the radial motion (vibration) of the molecule, and ignore rotation. In
other words, the Schrödinger equation is(

− h̄
2

2µ

d2

dr2
+ V (r)

)
ψ(r) = Eψ(r). (3)

Answer the following questions.

(a) Plot the inter-proton potential by Heitler–London (see lecture notes)
and show that Morse potential with b = 0.92a0, r0 = 1.64254a0, and
V0 = 0.116 e2

a0
approximates it well.

(b) Rewrite the Schrödinger equation using the variable ξ = K0be
−(r−r0)/b.

Use K0 =
√

2µV0/h̄, κ =
√
−2mE/h̄.

(c) At large ξ, show that ψ(ξ) ∼ e−cξ. Determine the constant c.

(d) Define ψ(ξ) = w(ξ)e−cξ and write down the equation for w(ξ).

(e) Solve for w(ξ) in power series: w(ξ) = ξα(1+c1ξ+c2ξ
2+· · ·+cnξn+· · ·).

Determine α, and obtain the recursion relation between cn and cn−1.

(f) Unless power series expansion in w(ξ) stops at finite n, w(ξ) ∼ e2cξ

and does not give a normalizable ψ(ξ). Therefore, at some n, cn must
vanish. Show that the energy eigenvalues are therefore given by

En = − h̄2

2µb2

(
K0b− n+

1

2

)2

. (4)

Note Actually, ξ extends only up to K0be
r0/b, but in practice it is quite large.

Also for larger ξ, or equivalently small r, the Morse potential is no longer
a good approximation but the potential behaves as e2/r and diverges.
Therefore, requiring exponentially damping wave function for large ξ is
a good approximate method to solve the problem.

(g) Show that for n� K0b the energy eigenvalues can be approximated by
those of a harmonic oscillator nh̄ω. Determine ω.

(h) Compare the first excitation energies for rotation, vibration, and elec-
tronic excitation, and verify that they are widely separated to justify
Born–Oppenheimer approximation.


