
Physics 221B: Solution to HW #10

1) The Electromagnetic Field and its Hamiltonian1

a)

This is a standard computation which can be found in most books on quan-
tum field theory, though perhaps in the context of the scalar Klein-Gordon
field.

H =
1
8π

∫
d~x ~E2 + ~B2.

Using ~E = −1
c

∂ ~A
∂t and plugging in the mode expansion for ~A, the ~E2 contri-

bution to the energy is∫
d~x ~E2 =

∫
d~x 1

c2
2π~c2

L3

∑
~p,~q,λ,λ′(−i)2

√
ω~pω~q (εiλ(~p)aλ(~p)ei~p·~x/~ − εiλ(~p)∗a†λ(~p)e−i~p·~x/~)

∗ (εiλ′(~q)aλ′(~q)ei~q·~x/~ − εiλ′(~q)
∗a†λ′(~q)e

−i~q·~x/~).

After multiplying out, rewrite∫
d~x ei(~p±~q)·~x/~ → (2π~)3δ3(~p± ~q)

∑
~q →

L3

(2π~)3

∫
d~q.

Then since ω−~p = ω~p, after carrying out the obvious integrals we have∫
d~x ~E2 = −

∑
~p 2π~ω~p

∑
λ,λ′(ε

i
λ(~p)aλ(~p)εiλ′(−~p)aλ′(−~p)− εiλ(~p)∗a†λ(~p)εiλ′(~p)aλ′(~p)

− εiλ(~p)aλ(~p)εiλ′(~p)
∗a†λ′(~p) + εiλ(~p)∗a†λ(~p)εiλ′(−~p)∗a

†
λ′(−~p)).

Now
εiλ(~p)εiλ′(−~p) = −δλ,λ′

εiλ(~p)∗εiλ′(~p) = δλ,λ′ ,

with analogous results for the other combinations (check simple cases). Then∫
d~x ~E2 =

∑
~p,λ 2π~ω~p (aλ(~p)aλ(−~p) + a†λ(~p)aλ(~p) + aλ(~p)a†λ(~p) + a†λ(~p)a†λ(−~p)).

1I thank Ed Boyda once more.
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The terms like aa and a†a† cancel with similar terms from ~B2 while the
other terms add. Including the 1/8π from the definition of energy,

H =
1
8π

∫
d~x ~E2 + ~B2 =

1
2

∑
~p,λ

~ω~p (a†λ(~p)aλ(~p) + aλ(~p)a†λ(~p)).

Using [a, a†] = 1 gives the result

H =
∑
~p,λ

~ω~p (a†λ(~p)aλ(~p) +
1
2
).

b)

We consider the coherent state of photons with ~p = (0, 0, p) and helicity
λ = +.

|f, t〉 := e−f∗f/2efe−ic|~p|t/~a†+(~p)|0〉.

i~
∂

∂t
|f, t〉 = c |~p| fe−ic|~p|t/~a†+(~p)|f, t〉.

Since |f, t〉 is an eigenstate of the annihilation operator, aλ(~q)|f, t〉 =
δλ+δ~p~q fe

−ic|~p|t/~|f, t〉,

H |f, t〉 =
∑
~q,λ

c |~q| a†λ(~q)aλ(~q)|f, t〉 = c |~p| a†λ(~p) fe−ic|~p|t/~|f, t〉,

ignoring the zero point energy and using the delta functions to perform the
sums. Clearly i~ ∂

∂t |f, t〉 = H |f, t〉.

c)

Again, |f, t〉 is an eigenstate of the annihilation operator and 〈f, t| is an
eigenstate of the creation operator so that

〈f, t| aλ(~q)|f, t〉 = δλ+δ~p~q fe
−ic|~p|t/~,

〈f, t| a†λ(~q)|f, t〉 = δλ+δ~p~q f
∗eic|~p|t/~.

The definition of ~A gives immediately

〈f, t| ~A|f, t〉 =

√
2π~c2
L3

1
√
ω~p

(~ε+(~p)fe−ip·x/~ + ~ε∗+(~p)f∗eip·x/~),

where p · x = c |~p| t − ~p · ~x is the Minkowski scalar product. The coherent
state expectation value reproduces a classical plane wave.
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3)

a)

Work in units where ~ = 1. It is convenient to rewrite the Hamiltonian as

H = −J
∑
〈ij〉

~s1 · ~s2 = −J
∑
〈ij〉

sziszj +
1
2
(s+,is−,j + s−,is+,j)

where s± = sx ± isy. When all spins are up along the z axis only the first
term in H contributes because the other two terms will “try to raise” spins
that are already up. Therefore, defining |0〉 ≡ | ↑↑↑↑ . . .〉

H|0〉 = −J
∑
〈i,j〉

sziszj |0〉 = −J
∑
〈i,j〉

1
4
|0〉 = −NJ

4
|0〉

where N the number of pairs.

b)

The system is rotationally invariant, so the Hamiltonian should commute
with the rotation operator. We can check this for the particular rotation
Ũ = ΠiU(θ) = e−iθ

∑
i syi :

[syi + syj , ~si · ~sj ] = [syi + syj , sxisxj + syisyj + sziszj ]
= −iszisxj − isxiszj + isxiszj + iszisxj = 0.

Commuting operators have commuting exponentials, so HŨ = ŨH; the
Hamiltonian is invariant under the rotation. This means that the new
ground state |0′〉 := Ũ |0〉 satisfies

HŨ |0〉 = ŨH|0〉 = E0Ũ |0〉,

so the rotated state is also a ground state, an equivalent “choice” for the
spontaneous symmetry breaking.

We want to check that the two ground states are orthogonal in the limit
N → ∞ where N is the number of spins. Consider a given spin which in
the ground state is in the state | ↑〉 =

(
1
0

)
. The rotation sends this to

| ↑′〉 =
(

cos θ
2 − sin θ

2

sin θ
2 + cos θ

2

) (
1
0

)
= cos

θ

2
| ↑〉+ sin

θ

2
| ↓〉.

3



Taking the inner product 〈0|0′〉 will give a product of factors 〈↑ | ↑′〉, one
for each spin. The factors are

〈↑ | ↑′〉 = 〈↑ |(cos
θ

2
| ↑〉+ sin

θ

2
| ↓〉) = cos

θ

2
.

For N spins,

〈0|0′〉 = (cos
θ

2
)N .

For any non-zero rotation, the factor cos θ
2 will be less than one. Thus as

N →∞, (cos θ
2)N → 0.

c)

Now we consider the state

|ψ〉 =
∑

n

eikna| ↑↑↑↑↓n↑↑ . . .〉.

This time when we act H on |ψ〉 the last two terms in H may contribute.
Defining |ψn〉 ≡ | ↑↑↓n↑ . . .〉 we see how H acts

H|ψn〉 = −J N − 4
4

|ψn〉 −
J

2
(|ψn−1〉+ |ψn+1〉).

The first term above is just the groundstate energy form part (a), but after
two pairs have changed from sziszj = +1 to sziszj = −1. The rest comes
from the s+s− terms “moving” the spin thats pointing down by one site to
the left or to the right.

Now, for |ψ〉 =
∑

n e
inka|ψn〉 we get

H|ψ〉 =

= −J
∑

n

einka (N − 4)
4

|ψn〉 −
J

2

∑
n

ei(n+1)ka|ψn〉 −
J

2

∑
n

ei(n−1)ka|ψn〉

= −J
(
N − 4

4
− 1

2
eika − 1

2
e−ika

) ∑
n

einka|ψn〉 = −J
(
N

4
+ 1− cos ka

)
|ψ〉.

The excitation energy is obviously

∆E = J(1− cos ka).

This is a tiny excitation for N � 1, as we expect.

4


