Physics 221B: Solution to HW #10

1) The Electromagnetic Field and its Hamiltonian'

a)

This is a standard computation which can be found in most books on quan-
tum field theory, though perhaps in the context of the scalar Klein-Gordon
field.
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Using E = —%%—f and plugging in the mode expansion for ff, the E2 contri-

bution to the energy is
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After multiplying out, rewrite
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Then since w_z = wyp, after carrying out the obvious integrals we have
[di B2 = =3 2nhws Y,y (e (Bar(B)eh (—pax (—p) — 4 (7)*al (B)ely (B)ax (P)

— &\ (D)ar(B)el, (B)*al, (B) + €\ (B) al (D)€l (—7)*al, (7).

Now ) )
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with analogous results for the other combinations (check simple cases). Then

[di B2 = S, 2nhws (ax(@)ax(—P) + al(F)ax(P) + ax(P)al (§) + al (9)al (—7)).

T thank Ed Boyda once more.




The terms like aa and a'a® cancel with similar terms from B2 while the
other terms add. Including the 1/87 from the definition of energy,

™
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Using [a,al] = 1 gives the result
1
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DA
b)

We consider the coherent state of photons with 5 = (0,0,p) and helicity
A=+
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Since |f,t) is an eigenstate of the annihilation operator, a)(q)|f,t) =
OxiO5g fe~ PN f, 1),
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ignoring the zero point energy and using the delta functions to perform the
sums. Clearly ihd|f,t) = H|f,t).
c)

Again, |f,t) is an eigenstate of the annihilation operator and (f,t| is an
eigenstate of the creation operator so that

(f.tlax(@)f,t) = 6x405q fe P/,

(.t aX(@)1F,t) = dry 0 frevlrtt/n,
The definition of A gives immediately
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where p -z = ¢|p|t — p'- & is the Minkowski scalar product. The coherent
state expectation value reproduces a classical plane wave.

(f.HAlft) = (&L (D) fe /M 4 &% (p) freP s/,



3)
a)

Work in units where i = 1. It is convenient to rewrite the Hamiltonian as

H = —JZsl Sy = —JZSZZSZJ s+zs J+S5—is+)
(i5) (ig)

where s+ = s, £+ is,. When all spins are up along the z axis only the first
term in H contributes because the other two terms will “try to raise” spins
that are already up. Therefore, defining [0) = | 1117 ...)

NJ
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where N the number of pairs.

b)

The system is rotationally invariant, so the Hamiltonian should commute
with the rotation operator. We can check this for the particular rotation
U=1ILU(H) = e 02Xisvi

[5y; + Sy Si - 551 = [sy; + Sy ;> SaiSaj T Sy;Sy; + 5275z
= —08:iSzj — USziSzj T 1S24Szj + 182825 = 0.

Commuting operators have commuting exponentials, so H U=UH ; the
Hamiltonian is invariant under the rotation. This means that the new
ground state |0) := U|0) satisfies

HU|0) = UH|0) = EoU|0),

so the rotated state is also a ground state, an equivalent “choice” for the
spontaneous symmetry breaking.

We want to check that the two ground states are orthogonal in the limit
N — oo where N is the number of spins. Consider a given spin which in
the ground state is in the state | T) = ((1)) The rotation sends this to
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Sin 5 + cos 35



Taking the inner product (0]0’) will give a product of factors (1 | '), one
for each spin. The factors are

(117) = {1 ltcos | 1 +sim 5] 1)) = cos £

For N spins,
0
(0]0") = (cos §)N

For any non-zero rotation, the factor cosg will be less than one. Thus as
N — o0, (cos )N — 0.

c)

Now we consider the state

[9) =D ™ 11T - ).

This time when we act H on [¢) the last two terms in H may contribute.
Defining |[¢,) = | 111nT ...) we see how H acts

Hln) = =7 ) = 5 (W) + [}

The first term above is just the groundstate energy form part (a), but after
two pairs have changed from s;;s.; = +1 to s;;5,; = —1. The rest comes
from the sis_ terms “moving” the spin thats pointing down by one site to
the left or to the right.

Now, for |[¢) =" €™y, ) we get

Hlyp) =
ea (N —4 J . J ,
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_ N_4_1ika_17ika inka _ E -
= J( 1 5¢ 5¢ );e V) = J<4+1 coska)hb).

The excitation energy is obviously
AE = J(1 — coska).

This is a tiny excitation for N > 1, as we expect.



