Physics 221B: Solution to HW # 8Quantum Field Theory

1) Bosonic Grand-Partition Function

The solution to this problem is outlined clearly in the beginning of the lecture notes 'Quantum Field Theory II (Bose Systems)' and will not be repeated here. I will just point out the most common mistake. When dealing with the grand canonical ensemble we cannot simply write $U = -\partial_{\beta} \log Z$ since this gives us $\partial_{beta} \Omega$ which is clearly not what we want. The correct thermodynamic procedure of getting U is explained in the notes. The result comes out to be the intuitive one

$$U = EN.$$

2) A Useful Hamiltonian

We want to "diagonalize" the Hamiltonian. When working with a and a^{\dagger} operators this basically means trying to write it in the form $H \sim b^{\dagger}b$ where $[b, b^{\dagger}] = 1$. Staring at this Hamiltonian for a few minutes shows that it can be written

$$H = \hbar\omega(a^{\dagger} + \frac{V}{\hbar\omega})(a + \frac{V^*}{\hbar\omega}) - \frac{VV^*}{\hbar\omega},$$

and indeed $[b, b^{\dagger}] = 1$ for $b = a + \frac{V^*}{\hbar \omega}$ and b^{\dagger} its complex conjugate. When b and b^{\dagger} are adjoints and $[b, b^{\dagger}] = 1$, the states are determined uniquely to be what you expect:

$$|gs\rangle, \quad b^{\dagger}|gs\rangle, \quad \frac{1}{\sqrt{2!}}b^{\dagger}b^{\dagger}|gs\rangle, \quad \dots,$$
 (1)

where $b|gs\rangle = 0$. All we need to do is find the local ground state $|gs\rangle$. We know the coherent state $|f\rangle = e^{\frac{-ff^*}{2}}e^{fa^{\dagger}}$ is an eigenstate of the operator a with eigenvalue f, so if we choose $f = f_0 \equiv -\frac{V^*}{\hbar\omega}$,

$$b |f_0\rangle = \left(a + \frac{V^*}{\hbar\omega}\right) |f_0\rangle = \left(f_0 - \frac{V^*}{\hbar\omega}\right) |f_0\rangle = 0.$$

So our ground state is the coherent state with $f = -\frac{V^*}{\hbar\omega}$, the eigenstates are given in (1), and the eigenvalues of the Hamiltonian are

$$E_n = \hbar \omega n - \frac{VV^*}{\hbar \omega}, \qquad n = 0, \ 1, \ 2, \ \dots$$