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HW #6

1. Three-electron Atoms

(a)

We set up the Slater determinant for three electrons,
[1sT), [1sT), [1s"),
[1s22s) = :%f-det [1s'), [1sb), |1s);,
[25);,  128), |28,
Here, the subscripts refer to which electron out of three, and we did not specify the spin orientation of the electron in the 2 s
state because it is not relevant. The Slater determinant for the 1% 2 p configuration would be similar, except that there is an

additional quantum number of m; = —1, 0, 1 which is also not relevant for the calculations. By writing it out, I get
[15%25s :\/Lg(lls?lsi2s)+|lsi2sls? +|2sls?1sL
— 15" 2s1s")—|2s1s" 1s")—|1s" 15" 25
and
[1s22p :\/#g(llsTlsi2p)+|lsi2pls? +|2plsT1sL
—|1s"2plst —|2p1s¢1s¢ —|1s¢1s¢2p
Here, the notation is
[1s"1s*2p)=]1s"), ®]|1s* ,®12p) ete.
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(b)

3 >
The expectation value of Hy= E (g— - ze ] for the 1s>2s configuration

i=1
is
(1s22s|Hy|1s%2s)
=+ (1" 15" 25| +(1s" 25 18" [+2s1s" Is* | =(1s" 2518 [=(2s1s* 15" |=(1s" 15" 25 ))

Hy(| 18" 18" 2s)+|1s*2s1s™)+[2s1s" 15
—|1s"2s1s*)—]2s1s" 15Ty —|1s" 15" 25))

Yuck! Ihate Mathematica. The point here is that H; is a one-body operator. It picks up only one out of three electrons each
time. For instance, if I calculate the term

3 L2
(Is"1s"2s|Hy |15  1s*2s) = E <1sT1s¢2s %—ij 1sT1s¢2s>

i=1

52 X ) X ) X
=<1s¢lsi2s %—Zr—f lsT1s¢2s>+<1sT1si2s %—Zr—j lsT1s¢2s>+<1sTlsi2s ?m —Zr—j 1s?lsi2s>
In the first term, the second and third electrons are not affected by the operator and
L2
<1sTls¢2s %—% lsTls¢2s>
52 R
=(<1sT 1®<1s¢ 2®<2s|3)(%—{—f)(|1f>1® 1s¢> ® 2s>]
2 3
52 R
=<1s? | e L 1sT> (Is* ] [ 154y, 253 |2s),
1

2
(1] & - 22 15)
In the last line, I used the fact that the single-particle states are properly normalized. The expectation value refers to only a
single-particle state, and I  dropped the  particle index. There-

fore, . ,
(lsTlsi2s|Holls¢lsi2s)=<1s?|%—¥|1s¢>+<lsi|%— Zf 2s>
=E\s+Eis+Ep

and hence the expectation value is simply the sum of single-particle energies. The same applies to all the diagonal pieces in
the expectation value.

2

32
1 p__Ze2
ls >+<2s| o

r

For the off-diagonal (the ket and the bra are different) pieces, we find, for example,

502
<1sTls¢2s g‘m —Zrlez 1s¢2s1sT>
502 X
=(<1s¢ 1®<1sL 2®<2s|3)(%— Zrle )(|1s¢)1® 2s> ® 1s¢>]
2 3
502 X
=<1sT | e = L 1s¢> (Is* 2 |2s), 253 | 1s"),
1

=0
because of the orthogonality of single-particle states. Therefore, the expectation value of Hy is given by the diagonal pieces
only, and we find
(1s22s|Hy|1s%25s)
= %((ls? I1st2s|Ho|1s"1s'2s)+(1s'2s1s" |Hy|1s" 251"y +2s1s" 15 |Hp|2sls" 1s*)+
A" 2518  [Hy|15"2s1s)+Q2s1st 1s" |Hy|2s1s 18" +{1s" 15" 25 |Hy|1s" 15" 2s))
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(1s22s|Hy|1s?2s)=Eis+E, +Ey,, just the sum of single-particle energies without any prefactor.

This is a general result for any Slater determinants if the operator is a "single-body operator".

(c)

The Coulomb potential is an example of a "two-body operator "

&2 &2

The expectation value of A H = Zl<] S T T for the 1% 2 s configuration is
(1s22s|AH|1s*25)
=+ (1" 15" 25| +(1s" 25 18" [+2s1s" Is* | =(1s" 2518 [=(2s1s 15" [=(1s" 15" 25 ))
AH([1s"1s 2s)+ |15 2s1s"y+]2s1s" 1s%)

— 15" 2s1s*y—[2s1s* 1sTy—|1s" 15" 25))
For instance, if I calculate the term
(1s" 15 2s|AH|1s 1s*2sy=(1s"1s"2s —t =
=<1s¢ls L2s>+<1s?lsi2s K|1s¢ls¢2s>+<1s¢ls
In the first term, the third electrons are not affected by the operator and
<1sT s L2s>

= (157 @f1s ho@sk) = (1157, ®]154), @ |25) )

2

e—+f—2|1sTlsi2s>
23

L2s>

=(1s" |, ®(1s* |, & 1) ®|15") 2sls12s),s

2
=(1s" | ®(1s" | = [ 157), ®[1s')

2
= ( 6—2 | 1s'1 s¢>
Similarly with the other two terms. Therefore,
(AIs"1s'2s|AH|1s 15" 2s) =

<1s¢|1 <1s¢|2— 1s> ®|1s¢>2+<1sT|1 ®<2s|3%|ls?>l®|2s> <1s¢|2®<2s|3— 1s> ®|2s>3

ri2 13

Because each term involves only two electrons, not three of them, we can relabel them so that the Coulomb potential always
refers to "1" and "2",
(Is"1s'2s|AH| 1s? 1st2s) =

<1sT |1 <1sL |2 —Ils ) ®| lsi>2 +<1s¢ |1 ®<2s|2 % | ls?>1 ®|2s>2 +<1sL |1 ®<2s|2 % | 1s¢>1 ®|2s>2
and we write them in a simpler expression,
(lsTlsi2s|AH|1s¢lsi2s)=< 6—22|1s?1s¢>+<1s 6—22|1s?2s)+<1s L2s>
Namely the sum of all three combinations. The same applies to all the diagonal pieces in the expectation value, and they all
give the same result. The contribution of all diagonal terms is hence
%((ls? 1s'2s|AH|1s 15" 2s)+(1s'2s1s" |AH|1s'2s1s")+Q2s1s" 15" |[AH|2s51s" 1s%)+

(Is"2s1s"  |[AH|1s" 2518 ) +@2sls'1s" |AH|2s1s  1s"y+ (s 1s"2s |AH|1s 1s"2s))

=(1s"1s'2s|AH|1s" 15 25)

= st )+ )
In general, there are N! diagonal matrix elements which cancels the T normalization factor, and each term contributes 5 C,
pieces, one for each Coulomb term.

Unlike for the single-body operator, there are also the so-called "exchange terms" where two electrons are interchanged in the

ket and the bra,
—(Is"1s'2s|AH|1s"2s15%)
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=—<1sT1si2s i+i+i|1s¢2slsi>

2 ri3 13

=—(1s" 15" 25 % [1s'251s")—(1s" 1s* 25 % [1s"2s1s") (15" 15" 25 % [1s'2515")
In the first term, the third electron is not affected by the operator, and the matrix element is proportional to (2s|1s*) = 0.
The same is true also with the second term where the orthogonality of the second electron state makes it vanish. The only

contribution comes from the third term. By going through the same steps as for the diagonal piece, we find
—(Is"1s'2s|AH|1s"2s15%)

=—<1sT 1s*2s i+i+i|1s¢2slsi>
2 i3 123
=—<1s¢2s %|2s1si>

where the "2" and "3" are relabeled to "1" and "2". Out of 6 x5 =30 (or in general N!x(N! — 1)) off-diagonal matrix ele-

ments, there are only 6x3 = 18 (or in general N!xy C, = N! N(N — 1)/2) such terms. The overall N! cancels % in the

normalization factor.

On the other hand, when the ket and bra has more than two electrons interchanged, the orthogonality of the single-particle
states makes them vanish. For exam-

ple,
—(Is"1s'2s|AH|1s"2s15%)

=—<1sT1si2s i+i+i 1s?2s1si>
=—<1sT1s¢2s i|1sT2s1s¢>—<1sT1s¢25 i|1sT2slsi>—<1sT1s¢2s i|1sT2s1s¢>
2 i3 123

T2 i3 23
In each term, there is one electron that is not affected by the operator that makes the matrix element vanish.

Therefore, the off-diagonal pieces contribute as
—(1s" 1s* %|lsL 1s') = (1s"2s % [2s1s") = (15" 25

%|2s1si>.

The grand total is
(As*2s|AH|1s225)

=<1s?lsL %|1s?lsi>+<1s?2s

%|1s?2s>+<1si2s

%|1s¢2s>

6'2 6'2
—<ls¢lsL £ 2s1sT>—<1si2s E|2s1si>

2

%|lsL lsT>—<1s?2s

In general, the result for the two-body operators is given by the y C, non-exhcnage and y C, exchange terms, the latter with
the negative signs.

Everthing is the same for 1% 2 p configuration after changing 2 s to 2 p.

(d)

Because the Coulomb potential does not affect the spins, the electron "1" in the ket and the bra must have the same spin to
give a non-vanishing contribution, and the same for the electron "2". Therefore,

<1s? 1s* | % | 1s* 1sT>=O

At this point, we have to decide if 2 s electron is spin up or down. Ifiit is spin up,

<1SL 25" % |2s? 1si> =0.

Therefore, the grand total is simplified to
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(As*2s|AH|1s225)

=<1s? 1 st %|1sT 1s¢>+<1s¢2sT % | 1s?2s?>

+(1s* 25" % [1st25T) = (1525 % |2s" 1s7)

Furthermore, the second and third terms here are the same. After using up all spin degrees of freedom, and expression

simplifies to
(1s22s|AH|1s%25)

=<1s1s %|1s1s>+2<1s2s

%|1s2s>—(1s2s %|2s1s>

(e)
We use the perturbation theory to work out the binding energy up to the first order in the Coulomb repulsion.

We make use of the identities
1 A !
—_ = Zl:O VZT Pl(COS 912)

2 -
and
Py(cosBp) = 5755 30 V™ (Q1) Y™ ().
The radial wave functions are
R (r)=a3?2¢7l
_ =32 1 r -r/2a
Roy(nN=a? Tz_(l - 5=)e™
Rzp(i’) - a—3/2 \{_g r e—r/2a

a

Here, a = ag | Z, where ag = #* / (m, €?).

= 152 2 s configuration

We first study the 1% 2 s configuration.

. . _ =9 ze _ -9 Z2¢
The one-body operator Hy gives simply E;; + Eys + E,, = — = = =

8 a 8 ag

Now we calculate the Coulomb repulsion terms. The first term is
<1s1s %|1s1s>

2 2 & —-r/a 2 —r/a 2
=a [dx; [dx; += Q2 Y Q) 2e ¥ ()
Using the above identities, we find only [ = m = 0 contributes,

<1s1s %|1s1s>

= 62 Cl_6 fd;I fd;z % 47TY00(QI) YOO(QQ)
Qe ¥ () 2 Y ()

. 1 _ _
=e2a® frlzdrl frzzdrz - 16 ¢7271/a g=212/a
S

1
Inf2]:= 2 Integrate[Integrate[lG r,2E2%/a p,2 g 2%2/2 _ (y,, 0, r;}, Assumptions » a > 0] ,
r

{r,, 0, ©}, Assumptions » a > 0]

5a’

Out[2]=
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Hence (1s1s] < |1s1s)=2 <

The second term is
(1s2s] £ [152s) =a™® [d %) [d% £ Qe % @, 61)) (F5 (1= )P 16, )

ri2
Again only / = m = 0 contributes,
<1s2s % | 1s2s)

i i 2 I —r; a 2
=c*a™ [dxi [dxy =4 Yo’ 01, $1) Yo" (02, 62) Qe Yo 01, 61) (75 (1= 55) €22 Y (62, 62)

_ 1 2 _
=e2a 6frlzdrl frzzdrz —2(1-%) e 2nla g=rfa
.

1 rp 2
In[3]:= Integrate[Integrate[Z r?r,? — (1 -5 ) E271/a g*2/2 (y,, 0, r;}, Assumptions » a > 0] ,
r; a

{r;, 0, ©}, Assumptions » a > 0] +

1 r, 2
Integrate[Integrate[Z r?2r,?2 — (1 -3 ) E271/2 g2/2 (y , 0, r,}, Assumptions -» a > 0] ,
rp a

{r,, 0, ©}, Assumptions » a > 0]

17 a®

out[3]= 57—

Hence <1s2s| % | 1s2s>= % %

The third term is
<1s2s| % |2s1s)
=a™S [d3, [d3, £ Qe v 0. ¢1))
Q2 Yo (6, 92)) (g5 (1= 57) e P Yo 61, 6) (5 (1= 35) €22 Yo" (62, 62)

Again only the [ = m = 0 piece contributes, and
2
<1s2s| “~ |2s 1 s) =e2a® frlz dr frzz dr, f 2eTni/a e la(l = gLy e 2e(1 — gy emn/2a

1 r r
In[8]:= 2 Integrate[Integrate[r12 r,2 — 2E371/(23) g3r2/(23) (1 -2 ) (1 -2 ),
r; 2a 2a

{r,, 0, r;}, Assumptions » a > 0] , {r1, 0, ©}, Assumptions -» a > 0]

16 a®

out[8]= 5o

Hence(ls2s|%|2sls>:71769%.

Putting all three terms together,
(1s22s|AH|1s*25)

_ 5 e 17 ¢ 16 &> _ 5965 &2
=S 2w 5w = T
17 16
Inf10]:= — +2 — -
81 729
out[10]= 5965
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Finally, adding the one-body pieces, the total energy is
_ 9 ze& 5965 & _ 9 72 & 5965 Ze* _
E=—5 5t 7575 & 53 e = T 193eV

for Z = 3 and using % =13.7eV.

-9 , 5965
Inf[12]:= 2*13.7*(?2 +WZ) /. {2 > 3}

Outf[12]= -193.35

= 152 2 p configuration

We next study the 15 2 p configuration.

. . — 2 — 2 2 . . . .
The one-body operator Hy gives simply Ey; + Eys + E, , = Tg Z: = Tg Za—: At this point, the energy is degenerate with

the 152 2 s configuration.

. . . . 2 2
Now we calculate the Coulomb repulsion terms. The first term is again the same as the 15> 2 s, (1 sls | fT | Isl s> = % =~

The second term is

(1s2p| £ [1s2p)=a™® [dx, [d2y £ @ 10 (@u) | Y& 2 emRey, (@)
Again only [ = m = 0 contributes because the d () integration is trivial,

<1s2s % | 1s2s)

=ea® [dx, [dx, =47 Y () %" ()
e Y, (@) | Lo 2 en2ay () 2

- 1 1 - 2
26‘261 Gfrlzdrl frzzdrz re ge 2rfa rj—ze r2/a
>

rzz

1 1
In[17]:= Integrate[Integrate[E rlr,? — E271/2 g*2/2 (y,, 0, r;}, Assumptions » a > 0] ’
r

a2

{r,, 0, ©}, Assumptions » a > 0] +

1, , 1 2 , .
Integrate[Integrate[? £’ r — — E-4fi/a g-r2/a8  fy), 0, r;}, Assumptions » a > 0] ’
r, a
{r,, 0, ©}, Assumptions » a > 0]
59 a®
out[17]= 243

Hence(ls2p|%|132p>=%i_

a

The third term is
62
<1s2p o |2p1s>
=a® [d %, [dx = Qe 7 (@) e % ()

(Y L enPaym@) (& ey
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In this case, only the / = 1 piece contributes, and
<1s2p| % |2p1s>

= 62 Cl_6 fd;I fd;z rr><2 4Tﬂ Ylm(ﬂl) Ylm*(ﬂz)
Qe ¥ () e %' ()

(\{_g o gnfa Y1m(91)) (\{__;3 L gnia Y1'"(Qz))

— 1 — — — —
26261 6 frIZ dr1 fr22 drz rr<2 5e rl/ae r/a %e ri/2a %e r/2a
>

r: 1 E-371/(2a) g-3r2/(22) r I

r;2 18 a a

2

In[24]:= 2 Integrate [Integrate [r1 r,?

{r,, 0, r;}, Assumptions » a > 0] , {r1, 0, »}, Assumptions -» a > 0]

112 a°

out[24]= ~gsE1-
2 2
Hence<1s2p r%|21171s>=—6151621 %

Putting all three terms together,
(1s?2p|AH|15*2p)

_ 5 & 2(2&)_ 12 ¢ _ 57397 &
T8 a 243 a 6561 @ ~ 52488 a
59 112
In[27]:= — +2 — - ———
8 243 6561
57397
Outl27]= 5488

Finally, adding the one-body pieces, the total energy is
E=_2 z e 57397 &2 _ _ 9 Z: ¢ 571397z’ _ —188eV

8§ a 5488 @ T8 Tap 52488 ap
for Z = 3 and using 5= = 13.7eV.
ag

-9 , 57397
In[31]:= 2*13.7*(Tz il RARCEE)

Out[31]= -187.537

Hence, 152 2 p configuration is less bound than the 1 5% 2 s configuration.
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(f)

The variational method requires only a small modification of the calculation done in (e). One has to be careful about Z' in
the wave function and Z in the Hamiltonian.

The one-body part is obtained as

2

P _ Z‘ZeZ
<nlm o nlm>— S
and
2 2 2
(nlm|z—e|nlm>=—zze‘ = _zze
r n*a n* ag
Therefore,

(15*25|Hy | 1525y ={(15*2p|Hy|1s5*2p)
12 12 62 _ , , 62

(227 E)- k(22 L) S = L1z -2 £
On the other hand, the calculation of the Coulomb repulsion terms does not depend on the Z but only on Z'. Hence, for the
1 52 2 s configuration,

9 ! 12y €2 5965 ) €
E=—§(2ZZ -7 )T+WZ -
Now we vary Z' to minimize the energy,

-9 ) 5965
In[36]:= Solve[D[? (22 2Zp - Zp°) + 5832 Zp, Zp] =0, Zp]

-5965 + 13122 7
; 3

outr36]= {{zp- 13123

. . -9 ) 5965
In[37]:= SJ.mle.fy[T (22 2Zp-2p°) + 5

. % 1
337 2P/ %L1 11]

(5965 - 13122 2)2

out[37]= 153055008
In[38]:= 2%13.7%% /. {Z » 3}
out[38]= -199.72

Therefore, the result is —200 eV and is lower than the perturbative result —193 eV.

Similarly for the 1 s? 2 p configuration,
__9 ! 12y &2 57397 1 &
E=-2QZZ2'-2")F+ z'=

a 52488
solve [-9 @ ;) 57397 J=0 ]
In[39]:= Solve[D[— (22 2p-2p>) + —— 2Zp, Zp| =0, Z
[39] P p p 52488 P, 4p r 4P
~57397 + 118098 Z
out[39]= {{zp 119098 1
40 Simplif [_9 (22 Zp - Zp?) 7397 b [1111]
Inf40]:= impli _— - + .3
P p-fp 52488
2
out[s0)= - (57397118098 2)

12397455648
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In[41]:= 2%13.7%% /. {Z > 3}

out[41]= -194.818

Even after the improvement by the variational method, which certainly is lower than the perturbative result —188 eV, but is
still higher than that of the 15 2 s configuration, —200 eV. In other words, the degeneracy between the 2 s and 2 p orbitals is
resolved by the Coulomb repulsion, and the 2 s orbital must be filled earlier than the 2 p orbital, the standard result consistent
with chemistry.

(9)

The ionization energy of Li is the energy required to remove an electron from Li to turn it into Li*. Removing another
electron turns it into Li**, and so on. Therefore, the total binding energy of the lithium is

In[f32]:= 5.39172 +75.64018 + 122.45429

out[32]= 203.486

Compared to the perturbative result, —193 eV, and the variational result, —200 eV, the experimental value is well reproduced,
especially after the variational method.



