HW #2, due Sep 17

1. There are conserved quantitites associated with the transformations in HW #1, 1. (i) Show that they are conserved using the equation of motion, and (ii) discuss the physical meaning of the conserved quantities by rewriting them in terms of the mode operators $a(\vec{p})$.

- (1) $\int d^3x \,\psi^{\dagger}\psi$
- (2) $\int d^3x \,\psi^{\dagger}(-i\hbar\vec{\nabla})\psi$
- <u>Rem</u> The conserved quantity associated with the Galilean boost is $\int d^3x \psi^{\dagger}(m\vec{x} + it\hbar\vec{\nabla})\psi$, and the conservation of this quantity describes the motion of the center of mass.
- 2. The spin statistics relation. Consider the action

$$S = \int d^4x \, (\partial_\mu \phi^\dagger \partial^\mu \phi - m^2 \phi^\dagger \phi). \tag{1}$$

for a complex Klein–Gordon field ϕ . Let us see whether we can consistently quantize the theory using Fermi statistics. The conjugate momenta to $\phi(x)$ and $\phi^{\dagger}(x)$ are the same as obtained in the class.

- (1) Impose an anti-commutation relation $\{\pi(x), \phi(y)\} = i\delta^3(\vec{x} \vec{y})$. Determine the anti-commutator $\{\pi^{\dagger}(x), \phi^{\dagger}(y)\}$.
- (2) By using the same mode expansion as in the class, obtain anti-commutation relations among the a(p), b(p) and their hermitean conjugates. Show that $b^{\dagger}(p)$ creates a state with a negative norm, *i.e.*, $|b^{\dagger}(p)|0\rangle|^2 < 0$.
- (3) Change the anti-commutation relation for b(p) and $b^{\dagger}(p)$ to the usual one by hand so that you have a Hilbert space with positive definite norms. Derive the anti-commutator $\{\phi(x), \phi^{\dagger}(y)\}$ using the modified anti-commutation relations among the creation and annihilation operators. Show that it violates causality.
- (4) Show that a similar action for a *real* scalar field vanishes identically if $\phi(x)$ is anti-commuting, *i.e.*, $\{\phi(x), \phi(y)\} = 0$.