HW #8, due Oct 29

1. Trace technique. Calculate the spin-summed squared amplitude for the $e^+e^- \rightarrow \mu^+\mu^-$ using the trace technique. Assume the electron is massles, but retain the muon mass m.

(a) Take the complex conjugate \mathcal{M}^* using

$$i\mathcal{M} = ie^2 \frac{1}{s} [\bar{u}(k)\gamma^{\mu}v(\bar{k})] [\bar{v}(\bar{p})\gamma_{\mu}u(k)].$$

$$\tag{1}$$

- (b) Multiply \mathcal{M} and \mathcal{M}^* and rewrite the product in terms of traces. Use $\sum_{\pm} u_{\pm}(p)\bar{u}_{\pm}(p) = p + m$ and $\sum_{\pm} v_{\pm}(p)\bar{v}_{\pm}(p) = p m$.
- (c) Evaluate the traces.
- (d) Show that

$$\sum_{\text{helicities}} |\mathcal{M}|^2 = 4e^4 \left(1 + \cos^2\theta + \frac{m^2}{E^2} \sin^2\theta \right)$$
(2)

(e) Calculate the total cross section by using the formula

$$\sigma = \frac{1}{2s} \frac{1}{2} \frac{1}{2} \frac{\beta_f}{8\pi} \int_{-1}^{1} \frac{d\cos\theta}{2} \sum_{\text{helicites}} |\mathcal{M}|^2 \tag{3}$$

Here, two factors of 1/2 come from the spin average of initial electron and positron. Express it in terms of $\alpha = e^2/4\pi$, $\beta = \bar{\beta}_f$ (remember this is $m_1 = m_2$ case), and s.

(f) Evaluate the numerical value of the cross section and show that

$$\sigma = \frac{86.8 \text{ nb}}{(\sqrt{s}/\text{GeV})^2} \tag{4}$$

(g) TRISTAN accelerator ran at center-of-energy of about 60 GeV and with a luminosity of 10^{31} cm⁻²s⁻¹. How long time one has to wait for another muon pair on average?

2. Coulomb scattering. We study the scattering of electron in a static Coulomb potential. The static Coulomb potential is given by

$$A^0 = \frac{-Ze}{4\pi |\vec{x}|},\tag{5}$$

and then the interaction Hamiltonian is given by

$$H_{int} = e(\bar{e}\gamma^{\mu}e)A_{\mu} = \frac{-Z\alpha}{|\vec{x}|}\bar{e}\gamma^{0}e.$$
 (6)

- (a) Use the LSZ formula to write down the matrix element $iT_{fi} = \langle e, \vec{p}' | iT | e, \vec{p} \rangle$ in terms of the Heisenberg operators.
- (b) Calculate the correlation function $\langle 0|Te(x)\bar{e}(y)(-i)\int d^4z H_I(z)|0\rangle$.
- (c) Combining the above two, show that the matrix element is given by

$$iT_{fi} = iZ\alpha \frac{4\pi \bar{u}(p')\gamma^0 u(p)}{|\vec{q}|^2} 2\pi \delta(E' - E)$$
(7)

where $\vec{q} = \vec{p} - \vec{p}'$. Note that the three-momentum is not conserved because of the presence of the static Coulomb potential which breaks the translational invariance. The following Fourier transform is useful to know:

$$\int \frac{d^3x}{|\vec{x}|} e^{-i\vec{q}\cdot\vec{x}} = \frac{4\pi}{|\vec{q}|^2}.$$
(8)

(d) Show that

$$\sum_{\text{helicities}} |\bar{u}(p')\gamma^0 u(p)|^2 = \text{Tr}(\not\!\!p' + m_e)\gamma^0(\not\!\!p + m_e)\gamma^0 = 8E^2 \left(1 - \beta^2 \sin^2 \frac{\theta}{2}\right).$$
(9)

(e) The probability of scattering is given by

$$P = \frac{1}{2} \frac{1}{2EV} \frac{1}{2E'V} \int \frac{V d^3 p'}{(2\pi)^3} |iT_{fi}|^2,$$
(10)

where the factor of 1/2 is from the spin average for the initial electron. The cross section is then given by $\sigma = P/L$ with $L = \beta T/V$. Using $[2\pi\delta(E'-E)]^2 = 2\pi\delta(E'-E)T = 2\pi\frac{E'}{p'}\delta(p'-p)T$, perform dp' integral in $d^3p' = p'^2dp'd\Omega$ and obtain

$$\frac{d\sigma}{d\Omega} = \frac{(Z\alpha)^2}{4p^2\beta^2\sin^4\theta/2} \left(1 - \beta^2\sin^2\frac{\theta}{2}\right).$$
(11)

This is called Mott formula.

(f) Verify that the non-relativistic limit $\beta \to 0$ agrees with the Rutherford formula.