HW #3, due Feb 11

1. The standard basis for the fundamental representation of SU(3) is

$$\begin{split} T^{1} &= \frac{1}{2} \begin{pmatrix} 0 & 1 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix}, \qquad T^{2} = \frac{1}{2} \begin{pmatrix} 0 & -i & 0 \\ i & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix}, \qquad T^{3} = \frac{1}{2} \begin{pmatrix} 1 & 0 & 0 \\ 0 & -1 & 0 \\ 0 & 0 & 0 \end{pmatrix}, \\ T^{4} &= \frac{1}{2} \begin{pmatrix} 0 & 0 & 1 \\ 0 & 0 & 0 \\ 1 & 0 & 0 \end{pmatrix}, \qquad T^{5} = \frac{1}{2} \begin{pmatrix} 0 & 0 & -i \\ 0 & 0 & 0 \\ i & 0 & 0 \end{pmatrix}, \\ T^{6} &= \frac{1}{2} \begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & 1 \\ 0 & 1 & 0 \end{pmatrix}, \qquad T^{7} = \frac{1}{2} \begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & -i \\ 0 & i & 0 \end{pmatrix}, \qquad T^{8} = \frac{1}{2\sqrt{3}} \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & -2 \end{pmatrix}. \end{split}$$

- (a) Explain why there are exactly eight matrices in the basis.
- (b) Evaluate some of the commutators of these matrices and check that f^{abc} is totally antisymmetric. (To do it all is probably too much work by hand, but if you have access to Mathematica or Maple, you can do it all easily.)
- (c) Check the orthogonality condition $\text{Tr}T^aT^b = C(r)\delta^{ab}$ and evaluate the constant C(r) for this representation.
- (d) Compute the quadratic Casimir operator $C_2(r) = T^a T^a$.
- (e) Show that for any representation matrices $[T^a, T^b] = i f^{abc} T^c$, the matrices $T'^a \equiv -T^{a*}$ also satisfy the same commutation relations. (These are the representation matrices for anti-quarks.)
- (f) Show that both C(r) and $C_2(r)$ are the same for quarks and anti-quarks.

2. In higher orders of perturbation theory, the running for the QCD strong coupling constant $\alpha_s = g_s^2/4\pi$ is given by

$$\mu \frac{d\alpha_s}{d\mu} = -\frac{\beta_0}{2\pi} \alpha_s^2 - \frac{\beta_1}{4\pi^2} \alpha_s^3 - \frac{\beta_2}{(64\pi^3)^2} \alpha_s^4 - \cdots,$$
(1)

where $\beta_0 = 11 - \frac{2}{3}n_f$, $\beta_1 = 51 - \frac{19}{3}n_f$, and $\beta_2 = 2857 - \frac{5033}{9}n_f + \frac{325}{27}n_f^2$.

- (a) Solve this equation numerically with the boundary condition $\alpha_s(m_Z) = 0.119 \pm 0.03$ with $n_f = 5$ down to $m_b = 4.2$ GeV. Use $m_Z = 91.187$ GeV.
- (b) Solve this equation further down from m_b to $m_c = 1.3$ GeV using $n_f = 4$.
- (c) Solve this equation further down from m_c to the energy scale $\mu = \Lambda$ where α_s diverges, and determine Λ .