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HW #6

1. Inflaton

(a) slow-roll regime

In the slow-roll regime, we neglect the kinetic energy as well as ¢ term in the equation of motion. Then
m2 )

H2=22Gy 2% ¢*,3H¢p+m> ¢ =0.

We use 8 7 Gy = Mp; 2. Putting them together,

3= +m’ ¢ =0,

and hence

d¢=—\[ % mMp dt.
The solution is simply
$(0) =90~ 5 mMp 1.
Using this solution, the kinetic energy is
)
3¢ =5 m Mp?,
while the potential energy is
m: 40
B .
Therefore, if ¢ > Mp|, we see that the kinetic energy is indeed smaller than the potential energy. At the same time, ¢ =0

for the above solution and indeed is negligible compared other non-vanishg terms. The scale factor can be obtained from
the Friedmann equation
-2

H? = %2— = 31\/},,.2 %mz ¢,
R _ 1
R~ V6 Mp m¢’
dlogR = vle modt
Pl
and hence
log @ = Ty (@O0 1 = = m My, 1)

When ¢ >> Mpy, the first term in the parentheses dominates and the scale factor grows exponentially with time.
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(b) oscillating regime

In the oscillating regime ¢ < Mp; and m ¢ > 1, we study the equation of motion
¢+3H ¢ +m* =0,

H? = 55— (qﬁ +m ¢2)

with the ansatz

¢ = ¢(t)) - cosm(t — 1y).

¢ =¢(tr) L (—-m? cosm(t —1;) +2 2 sinm(t — ;) + =)

The leading term in 1/(m 1) is the first term in the parantheses which is canceled by m? ¢ term. To see if the next-leading
term is also cancelled in the equation of motion, we work out

<i§ =1 ) LS ( msinm(t—tl) - l cosm(t — 1)),

H? = 3Mp] 2 ot )2 Ly +2 o sinm(t — ty) cos m(t — ;) + — cos” m(t — 11)).

The equation of motion is then

o(t) " (2 sinm(t—1) + = 2)+

3 1
V6 Mp
The next leading terms are

$t) & Q5 sinm(t —11)) =3 == L m¢(n)” - msinm(t—1)=0
This is satisfied if
2 - 3\/—M tyme()=0

Bofm +2 2 sinm(t — 1) cos m(t — 1) + - cos? m(t — 1) $(t1)* L= (—msinm(t— 1) = L cosm(t —1,)) = 0

_ 2 My
h=2N7% w0

With this choice, the equation of motion is satisfied both for the leading and the next-leading terms in the expansion in
1/mt.

The expansion rate to the leading order is
2 L1 42 Mp® 1 4 1
H = g 3 000 Som? = e 345 50 oml = 5
This differential equation can be integrated easily and we find
%
R=R1)(7)
Therefore the energy density scales as

2 _ 4 1 RuDNS
p=3Mp* H? =3 Mp* =3 7 (=%%)

9 z2 3 42
Indeed, the energy density is that of matter-domnated universe.

(c) numerical solution

We solve the differential equation numerically. A word of caution is that this is actually a not very safe thing to do if the
solution oscillates crazy like this one. The numerical errors may build up. Mathematica seems to handle it fairly well,
though.

I didn't specify the boundary conditions. Normally, we take the initial time derivative to vanish, but of course we don't
really know what the right boundary conditions are.
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) 1 1 ) )
sol = NDSolve[{¢''[t] +3H¢ '[t] +m® ¢[t] =0 /. {H> .| —— — (¢'[t]* +m? $[t]?) } /.
3mMp12 2
{MP1 > 1, m>107?}, ¢[0] =100, ¢ '[0] =0}, ¢, {t, O, 100000} ]

{{¢$ » InterpolatingFunction[{{0., 100000.}}, <>]}}

Plot [Evaluate[¢[t] /. sol[[1]]1], {t, O, 20000},
PlotRange » {-1, 100}, PlotStyle -» RGBColor [0, 1, 0]]
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The slow-roll solution does not have vanishing time derivative at the initial time.

/2
Plot[é, - 3 mMPlt /. {¢o » 100, m > 102, MP1 » 1},

{t, 0, 13000}, PlotRange -» {-1, 100}, PlotStyle » RGBColor|[1l, O, 0]]
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- Graphics -
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The fact that they agree so well with each other is a demonstration that the inflation is quite insensitive to the initial values;
the solution quickly approaches the slow-roll solution.

Plot[Evaluate[¢[t] /. sol[[1]]], {t, 10000, 100000}, PlotRange -» {-1, 1}]
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- Graphics -

Plot [Evaluate[¢[t] /. sol[[1]]], {t, 10000, 100000}, PlotRange » {-0.1, 0.1}]
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- Graphics -

Note that the time 7 in this solution is not the same as the time ¢ in the analytic solution in the oscillating regime; they are
offset by the contribution from the slow-roll regime. But the offset is quickly forgotten as time goes on m¢ > 1. By
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multiplying the amplitude by time, we can see that the oscillation is more or less 1/¢, consistent with the analytic approxi-
mate solution.

Plot [Evaluate[t ¢[t] /. sol[[1]]], {t, 10000, 100000} ]
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- Graphics -

To compare the numerical and anlaytic solutions head-to-head, we need to do some more work. We fix the parameters by
looking at one period in the numerical solution

Plot [Evaluate[¢[t] /. sol[[1]]], {t, 40000, 41000} ]
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- Graphics -

to =t /. FindRoot [¢[t] ==0 /. sol[[1]], {t, 40300}]1[[1]]
40284.3

Evaluate[¢[t] /.sol[[1]] /. {t-)to +% &} /. {m-> 10'2}]
0.00573029

Then the approximate analytic
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Plot| - ¢1 Cos [m (t-to)-;]/.{tl-»z 3 me
1

} 7. {m>10?%, MP1 > 1} /.
trti-to- = 2

{¢, -> 0.005730285458006179" , t, -> 40284.31696953443"}, {t, 40000, 41000}]
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- Graphics -

Plot[Evaluate[t ¢[t] /. sol[[1]]1], {t, 40000, 50000}, PlotStyle - RGBColor[1l, 0, 0]]
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- Graphics -
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"2 MPl

tl T
¢1COS[m(t—to)—?] /. {t1—>2 —3- md)l

Plot[t

} 7. {m>10%, MP1 > 1} /.

trti-to- = 2

{¢1 -> 0.005730285458006179" , t, -> 40284.31696953443" },
{t, 40000, 50000}, PlotStyle - RGBColor[0, 1, 0]]
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- Graphics -

Show[%, %3]

)
w{ O

- Graphics -

They agree very well with each other.
Optional

It is too cumbersome to write many equations in Mathematica. It will be provided as a separate PDF file.



