
HW #6

1. Inflaton

(a) slow-roll regime

In the slow-roll regime, we neglect the kinetic energy as well as f
ÿÿ
 term in the equation of motion.  Then

H2 = 8 pÅÅÅÅÅÅÅÅ3  GN  m
2

ÅÅÅÅÅÅÅÅ2  f2 , 3 H f
ÿ

+m2  f = 0.
We use 8 pGN = MPl

-2 .  Putting them together,
3 m fÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅè!!!!6  MPl

 f
ÿ

+m2  f = 0,
and hence
d f = -"#####2ÅÅÅÅ3  mMPl  d t.
The solution is simply
fHtL = fH0L - "#####2ÅÅÅÅ3  mMPl  t.
Using this solution, the kinetic energy is
1ÅÅÅÅ2  f

ÿ 2
= 1ÅÅÅÅ3  m2  MPl

2 ,
while the potential energy is
m2
ÅÅÅÅÅÅÅÅ2  f2 .
Therefore, if f p MPl , we see that the kinetic energy is indeed smaller than the potential energy.  At the same time, f

ÿÿ
= 0

for the above solution and indeed is negligible compared other non-vanishg terms.  The scale factor can be obtained from
the Friedmann equation

H2 = R
ÿ 2

ÅÅÅÅÅÅÅÅR2 = 1ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ3 MPl
2  1ÅÅÅÅ2  m2  f2 ,

R
ÿ

ÅÅÅÅÅR = 1ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅè!!!!6  MPl
 m f,

d log R = 1ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅè!!!!6  MPl
 m f d t

and hence
log RHtLÅÅÅÅÅÅÅÅÅÅÅRH0L = 1ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅè!!!!6  MPl

 mIfH0L t - 1ÅÅÅÅÅÅÅÅÅÅè!!!!6  mMPl  t2 M
When f p MPl , the first term in the parentheses dominates and the scale factor grows exponentially with time.
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(b) oscillating regime

In the oscillating regime f ` MPl  and m tp 1, we study the equation of motion
f
ÿÿ

+ 3 H f
ÿ

+ m2  f = 0,

H2 = 1ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ3 MPl
2  1ÅÅÅÅ2  ik

jjf
ÿ 2

+ m2  f2y
{
zz

with the ansatz
fHtL = fHt1 L t1ÅÅÅÅÅÅt  cosmHt - t1 L.
f
ÿÿ

= fHt1 L t1ÅÅÅÅÅÅt  H-m2  cosmHt - t1 L + 2 mÅÅÅÅÅt  sinmHt - t1 L + 2ÅÅÅÅÅÅt2 L
The leading term in 1 ê Hm tL is the first term in the parantheses which is canceled by m2  f term.  To see if the next-leading
term is also cancelled in the equation of motion, we work out
f
ÿ

= fHt1 L t1ÅÅÅÅÅÅt  H-m sinmHt - t1 L - 1ÅÅÅÅt  cosmHt - t1 LL,
H2 = 1ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ3 MPl

2  1ÅÅÅÅ2  fHt1 L2  t1
2

ÅÅÅÅÅÅÅÅt2  Hm2 + 2 mÅÅÅÅÅt  sinmHt - t1 L cosmHt - t1 L + 1ÅÅÅÅÅÅt2  cos2  mHt - t1 LL.
The equation of motion is then
fHt1 L t1ÅÅÅÅÅÅt  H2 mÅÅÅÅÅt  sinmHt - t1 L + 2ÅÅÅÅÅÅt2 L +

3 1ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅè!!!!6  MPl
 t1ÅÅÅÅÅÅt  "###########################################################################################################m2 + 2 mÅÅÅÅÅt  sinmHt - t1 L cosmHt - t1 L + 1ÅÅÅÅÅÅt2  cos2  mHt - t1 L  fHt1 L2  t1ÅÅÅÅÅÅt  H-m sinmHt - t1 L - 1ÅÅÅÅt  cosmHt - t1 LL = 0.

The next leading terms are
fHt1 L t1ÅÅÅÅÅÅt  H2 mÅÅÅÅÅt  sinmHt - t1 LL - 3 1ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅè!!!!6  MPl

 t1ÅÅÅÅÅÅt  m fHt1 L2  t1ÅÅÅÅÅÅt  m sinmHt - t1 L = 0.
This is satisfied if
2 - 3 1ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅè!!!!6  MPl

 t1  m fHt1 L = 0.

t1 = 2 "#####2ÅÅÅÅ3  MPlÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅm fHt1 L .
With this choice, the equation of motion is satisfied both for the leading and the next-leading terms in the expansion in
1 êm t.

The expansion rate to the leading order is
H2 = 1ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ3 MPl

2  1ÅÅÅÅ2  fHt1 L2  t1
2

ÅÅÅÅÅÅÅÅt2  m2 = 1ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ3 MPl
2  1ÅÅÅÅ2  4 2ÅÅÅÅ3  MPl

2
ÅÅÅÅÅÅÅÅÅÅÅÅm2  1ÅÅÅÅÅÅt2  m2 = 4ÅÅÅÅ9  1ÅÅÅÅÅÅt2

This differential equation can be integrated easily and we find
R = RHt1 L I tÅÅÅÅÅÅt1 M

2ê3
 .

Therefore the energy density scales as
r = 3 MPl

2  H2 = 3 MPl
2  4ÅÅÅÅ9  1ÅÅÅÅÅÅt2 = 4ÅÅÅÅ3  1ÅÅÅÅÅÅÅÅt1 2  H RHt1 LÅÅÅÅÅÅÅÅÅÅÅÅR L3

Indeed, the energy density is that of matter-domnated universe.

(c) numerical solution

We solve the differential equation numerically.  A word of caution is that this is actually a not very safe thing to do if the
solution oscillates crazy like this one.  The numerical errors may build up.  Mathematica  seems to handle it fairly well,
though.

I didn't specify the boundary conditions.  Normally, we take the initial time derivative to vanish, but of course we don't
really know what the right boundary conditions are.  
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sol = NDSolveA9f''@tD + 3 H f'@tD + m2  f@tD ã 0 ê. 9H Ø $%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%1
ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ
3 MPl2

 
1
ÅÅÅÅ
2

 Hf'@tD2 + m2  f@tD2L = ê.

8MPl Ø 1, m Ø 10-2<, f@0D ã 100, f'@0D ã 0=, f, 8t, 0, 100000<E
88f Ø InterpolatingFunction@880., 100000.<<, <>D<<

Plot@Evaluate@f@tD ê. sol@@1DDD, 8t, 0, 20000<,
PlotRange Ø 8-1, 100<, PlotStyle Ø RGBColor@0, 1, 0DD
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Ü Graphics Ü

The slow-roll solution does not have vanishing time derivative at the initial time.

PlotAf0 - $%%%%%%2ÅÅÅÅ
3

 m MPl t ê. 8f0 Ø 100, m Ø 10-2, MPl Ø 1<,

8t, 0, 13000<, PlotRange Ø 8-1, 100<, PlotStyle Ø RGBColor@1, 0, 0DE
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Ü Graphics Ü
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Show@%, %%D
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Ü Graphics Ü

The fact that they agree so well with each other is a demonstration that the inflation is quite insensitive to the initial values;
the solution quickly approaches the slow-roll solution.

Plot@Evaluate@f@tD ê. sol@@1DDD, 8t, 10000, 100000<, PlotRange Ø 8-1, 1<D
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Ü Graphics Ü

Plot@Evaluate@f@tD ê. sol@@1DDD, 8t, 10000, 100000<, PlotRange Ø 8-0.1, 0.1<D
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Ü Graphics Ü

Note that the time t in this solution is not the same as the time t in the analytic solution in the oscillating regime; they are
offset  by the contribution from the slow-roll regime.  But the offset is quickly forgotten as time goes on m tp 1.  By
multiplying the amplitude by time, we can see that the oscillation is more or less 1 ê t, consistent with the analytic approxi-
mate solution.
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Note that the time t in this solution is not the same as the time t in the analytic solution in the oscillating regime; they are
offset  by the contribution from the slow-roll regime.  But the offset is quickly forgotten as time goes on m tp 1.  By
multiplying the amplitude by time, we can see that the oscillation is more or less 1 ê t, consistent with the analytic approxi-
mate solution.

Plot@Evaluate@t f@tD ê. sol@@1DDD, 8t, 10000, 100000<D
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Ü Graphics Ü

To compare the numerical and anlaytic solutions head-to-head, we need to do some more work.  We fix the parameters by
looking at one period in the numerical solution

Plot@Evaluate@f@tD ê. sol@@1DDD, 8t, 40000, 41000<D
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Ü Graphics Ü

t0 = t ê. FindRoot@f@tD ã 0 ê. sol@@1DD, 8t, 40300<D@@1DD
40284.3

EvaluateAf@tD ê. sol@@1DD ê. 9t Ø t0 +
p
ÅÅÅÅ
2

 
1
ÅÅÅÅ
m
= ê. 8m Ø 10-2<E

0.00573029

Then the approximate analytic
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PlotA t1
ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ
t + t1 - t0 - 1ÅÅÅ

m
 pÅÅÅ
2

 f1  CosAm Ht - t0L -
p
ÅÅÅÅ
2
E ê. 9t1 Ø 2 $%%%%%%2ÅÅÅÅ

3
 
MPl
ÅÅÅÅÅÅÅÅÅÅÅ
m f1

= ê. 8m Ø 10-2, MPl Ø 1< ê.

8f1 -> 0.005730285458006179`, t0 -> 40284.31696953443`<, 8t, 40000, 41000<E
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Ü Graphics Ü

Plot@Evaluate@t f@tD ê. sol@@1DDD, 8t, 40000, 50000<, PlotStyle Ø RGBColor@1, 0, 0DD
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Ü Graphics Ü
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PlotAt 
t1

ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ
t + t1 - t0 - 1ÅÅÅ

m
 pÅÅÅ
2

 f1  CosAm Ht - t0L -
p
ÅÅÅÅ
2
E ê. 9t1 Ø 2 $%%%%%%2ÅÅÅÅ

3
 
MPl
ÅÅÅÅÅÅÅÅÅÅÅ
m f1

= ê. 8m Ø 10-2, MPl Ø 1< ê.

8f1 -> 0.005730285458006179`, t0 -> 40284.31696953443`<,
8t, 40000, 50000<, PlotStyle Ø RGBColor@0, 1, 0DE
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Ü Graphics Ü

Show@%, %%D
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Ü Graphics Ü

They agree very well with each other.

Optional
It is too cumbersome to write many equations in Mathematica.  It will be provided as a separate PDF file.
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