
Quantum Fluctuation in the Inflating Universe

This is the optional problem in HW #6.
We start with the action for a massless scalar field

S =
∫

dtd3~x
√
−g

1

2
gµν∂µφ∂νφ. (1)

With the RFW metric ds2 = dt2 − R(t)2d~x2, the scale factor grows expo-
nentially R(t) = R(0)eHt. We now switch to the conformally flat metric
ds2 = R(η)2(dη2 − d~x2). Therefore, dt = R(η)dη, or equivalently, dη =
±R(t)−1dt = ±R(0)−1e−Htdt. Note that η is nothing but the size of the
particle horizon, namely the comoving distance for which the light could
propagate since the initial time. This differential equation is easy to inte-
grate, and we find

η = η0 ∓
1

H
R(0)−1e−Ht = η0 ∓

1

H
R(η)−1. (2)

In class, we chose η0 = 0 and η > 0, then R(η) = R(0)/(Hη) and t =
− 1

H
ln(HR(0)η). With this choice, note that η decreases as t increases. Many

of you found this confusing. Let me instead take the opposite sign here, η0 =
0 with η < 0, and hence R(η) = −R(0)/(Hη) and t = − 1

H
ln(−ηHR(0)).

This way, both t and η increase, while η is limited to η < 0. The action in
this metric is

S =
∫

dηd3~x
1

(Hη)4

1

2
(Hη)2(φ̇2−(~∇φ)2) =

∫
dηd3~x

1

(Hη)2

1

2
(φ̇2−(~∇φ)2). (3)

Here and below, the “dot” means η derivative.

Using the new variable φ̃ = φ/(Hη), φ̇ = Hφ̃ + Hη ˙̃φ, and the action is

S =
∫

dηd3~x
1

(Hη)2

1

2
((Hφ̃ + Hη ˙̃φ)2 − (~∇φ̃)2)

=
∫

dηd2~x
1

2

(
˙̃φ
2

+
2

η
φ̃ ˙̃φ +

1

η2
φ̃2 − (~∇φ̃)2

)
. (4)

The second term in the parentheses can be integrated by parts because 2φ̃ ˙̃φ =
∂
∂η

φ̃2,

S =
∫

dηd3~x
1

(Hη)2

1

2
((Hφ̃ + Hη ˙̃φ)2 − (~∇φ̃)2)

1



=
∫

dηd3~x
1

2

(
˙̃φ
2

+
1

η2
φ̃2 +

1

η2
φ̃2 − (~∇φ̃)2

)

=
∫

dηd3~x
1

2

(
˙̃φ
2

+
2

η2
φ̃2 − (~∇φ̃)2

)
. (5)

In the infinite past, η → −∞, the action is the same as in the ordi-
nary Minkowski space with this coordinate system. Therefore, the field is
expanded as usual

φ̃(η, ~x) =
∫ d3~p

(2π)32p

(
a(~p)e−ipη+i~p·~x + a†(~p)eipη−i~p·~x

)
. (6)

Here we already used the fact that the field is massless and hence Ep = p.
The creation and annihilation operators satisfy the commutation relation

[a(~p), a†(~q)] = (2π)32pδ3(~p− ~q) (7)

(see, e.g.., Peskin and Schroeder). The ground state is defined by a(~p)|0〉 =
0. Note that we are using the Heisenberg picture where the field operator
depends on “time” η.

At finite “time,” the Euler–Lagrange equation is

¨̃φ− 2

η2
φ̃−∆φ̃ = 0. (8)

We solve it with the boundary condition that the solution reduces to that
in Minkowski space Eq. (6) in the inifinite past η → −∞.1 Knowing the
following solution,(

d2

dη2
− 2

η2
+ k2

)
e−ikη

(
1− i

kη

)

=

(
−k2

(
1− i

kη

)
− 2ik

i

kη2
− 2i

kη3
+

(
− 2

η2
+ k2

)(
1− i

kη

))
e−ikη

=

(
−k2 +

ik

η
+

2

η2
− 2i

kη3
− 2

η2
+

2i

kη3
+ k2 − ik

η

)
e−ikη = 0, (9)

1This is an oversimplification for an inflation that lasted for an infinitely long time. For
a finite inflationary period, boundary condition needs to be specified at a finite η, instead
of η → −∞. This will come back as an issue later on.

2



we find

φ̃(η, ~x) =
∫ d3~p

(2π)32p

(
a(~p)e−ipη+i~p·~x

(
1− i

pη

)
+ a†(~p)eipη−i~p·~x

(
1 +

i

pη

))
.

(10)
This is a solution to the Euler–Lagrange equation Eq. (8) and correctly re-
duces to that for the Minkowski space Eq. (6) in the infinite past η → −∞.

The same-time correlation function is then evaluated easily,

〈0|φ̃(η, ~x)φ̃(η, ~y)|0〉

=
∫ d3~p

(2π)32p

∫ d3~q

(2π)32q
〈0|a(~p)e−ipη+i~p·~x

(
1− i

pη

)
a†(~q)eiqη−i~q·~y

(
1 +

i

qη

)
|0〉

=
∫ d3~p

(2π)32p

∫ d3~q

(2π)32q
e−ipη+i~p·~x

(
1− i

pη

)
eiqη−i~q·~y

(
1 +

i

qη

)
(2π)32pδ3(~p− ~q)

=
∫ d3~p

(2π)32p
ei~p·(~x−~y)

(
1− i

pη

)(
1 +

i

pη

)

=
∫ d3~p

(2π)32p
ei~p·(~x−~y)

(
1 +

1

(pη)2

)
. (11)

Note that the first piece in the parentheses exists also in the Minkowski space
and hence represents the usual zero-point fluctuation of the field. The second
piece is specific to the inflationary cosmology and grows with time η → 0.

Going back to the original normalization of the field operator φ = (Hη)φ̃,

〈0|φ(t, ~x)φ(t, ~y)|0〉 = (Hη)2
∫ d3~p

(2π)32p
ei~p·(~x−~y)

(
1 +

1

(pη)2

)

=
∫ d3~p

(2π)32p
ei~p·(~x−~y)

(
e−2Ht +

H2

p2

)
(12)

Remember that |η| is the horizon size. The modes λ̄ = h̄/p > H−1e−Ht

have the wevelengths larger than the horizon and are called the superhori-
zon modes. As time goes on η → 0, modes that used to be subhorizon go
superhorizon and and the first term in the parentheses can be ignored.

〈0|φ(t, ~x)φ(t, ~y)|0〉 =
∫

p<HeHt

d3~p

(2π)3
ei~p·(~x−~y) H

2

2p3
. (13)

This is a fascinating result. There is now superhorizon-sized correlation of
the field, in apparent violation of causality. Of course, it does not really
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violate causality because the mode used to be subhorizon size and the points
x and y were in causal contact back then. However if we see such a correlation
in the sky now , it appears that there is correlation between parts of the sky
without apparent prior causal contact.

This expression cannot be completely right, because it is infrared diver-
gent p → 0. This is an artefact of our oversimplified analysis assuming the
Minkowski space only back when η → −∞, namely that the inflation has
been going on since the beginning of the time. Realistically, we should as-
sume the inflation lasted only over a finite time, and the modes which exited
the horizon before the start of the inflation t = 0 (η = 1/HR(0)) should
not have received a large fluctuation. Therefore, the integration region for
the momentum is rather H < p < HeHt. (In practice, this is never really
an issue because the modes generated at the beginning of the inflation are
presumably still superhorizon size and we have not seen them.)

To see contributions of various modes, let us look at the variance (~x = ~y)

〈φ2〉 = H2
∫ HeHt

H

4πp2dp

(2π)3

1

2p3
=

H2

(2π)2

∫ HeHt

H

dp

p
=

H3

(2π)2
t. (14)

The variance increases as time, reminiscent of a random walk or diffusion pro-
cess. One can interpret this behavior as follows. During inflation, the volume
within H−3 is causally connected (horizon) and brews quantum fluctuation.
When a mode exists this volume, it loses quantum coherence because it is
no longer causally connected, and turns classical . Namely that the universe
observes the mode and the wave function collapses with a definite size and
sign. As each mode exists the horizon, it adds to the variance randomly with
an equal weight dp

p
. Hence the total variance 〈φ2〉 is the sum which grows as a

random walk. Fore more discussions on this point, see, e.g., Andrei D. Linde,
“Particle Physics and Inflationary Cosmology,” Harwood Academic Publish-
ers, 1990. The point that all modes contribute equally as dp/p is the reason
why the predicted spectrum is called scale-invariant . The fluctuation is also
Gaussian because the action is purely quadratic and the correlation function
is saturated by the two-point ones thanks to the Wick’s theorem (again, see
Peskin and Schoeder). In sum, scale-invariant Gaussian fluctuation that is
apparently acausal is the prediction of inflation.

Once the correlation function is regarded classical, it is used to obtain
the prediction on the density fluctuation in inflationary cosmology(see, Scott
Dodelson, “Modern Cosmology,” Academic Press, 2003). We simply apply
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the above calculation to the inflaton itself. We used the fact that the quantity

ζ =
δρ

ρ + p
(15)

is conserved throughout the superhorizon evolution. During the inflation
ρ + p = φ̇2 while δρ = V ′(φ)δφ. The field φ is slow-rolling down the poten-
tial classically, and the correlation function calculated above applies to its
fluctuation δφ. Therefore,

〈ζ(~x)ζ(~y)〉 =

(
V ′(φ)

φ̇2

)2

〈δφ(~x)δφ(~y)〉

=

(
V ′(φ)

φ̇2

)2 ∫
H<p<HeHt

d3~p

(2π)3
ei~p·(~x−~y) H

2

2p3
. (16)

Using the equation of motion during the slow-roll regime, 3Hφ̇ + V ′ = 0 and
H2 = 8π

3
GNV = V/(3M2

Pl), the prefactor is V ′/φ̇2 = 9H2/V ′,

〈ζ(~x)ζ(~y)〉 =

(
9H3

V ′

)2 ∫
H<p<HeHt

d3~p

(2π)3
ei~p·(~x−~y) 1

2p3
. (17)

When this quantity comes back into horizon, well after the inflation is over,
it is

ζ =
δρ

ρ + p
=

{
3
4

δρ
ρ

radiation dominant
δρ
ρ

matter dominant
(18)

This way, the density fluctuation for the mode when it enters the horizon is
given in terms of what was generated at the time of the inflation.

Of course we do not observe the density fluctuation as its mode entered
the horizon; it has evolved and grew since. This is the topic of structure
formation we did not cover in this course. Again the book by Dodelson
is a good reference on this question. What is striking is the fact that the
prediction of inflationary cosmology, coupled to the growth of structure once
the mode enteres the horizon, is in an excellent agreement with what is
observed in the galaxy-galaxy correlation function called power spectrum.
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timation method in its entirety, but it should be equally
valid.

7.3. Comparison to other results

Figure 35 compares our results from Table 3 (modeling
approach) with other measurements from galaxy surveys,
but must be interpreted with care. The UZC points may
contain excess large-scale power due to selection function
effects (Padmanabhan et al. 2000; THX02), and the an-
gular SDSS points measured from the early data release
sample are difficult to interpret because of their extremely
broad window functions. Only the SDSS, APM and angu-
lar SDSS points can be interpreted as measuring the large-
scale matter power spectrum with constant bias, since the
others have not been corrected for the red-tilting effect
of luminosity-dependent bias. The Percival et al. (2001)
2dFGRS analysis unfortunately cannot be directly plotted
in the figure because of its complicated window functions.

Figure 36 is the same as Figure 35, but restricted to a
comparison of decorrelated power spectra, those for SDSS,
2dFGRS and PSCz. Because the power spectra are decor-
related, it is fair to do “chi-by-eye” when examining this
Figure. The similarity in the bumps and wiggles between

Fig. 35.— Comparison with other galaxy power spectrum measure-
ments. Numerous caveats must be borne in mind when interpreting
this figure. Our SDSS power spectrum measurements are those from
Figure 22, corrected for the red-tilting effect of luminosity dependent
bias. The purely angular analyses of the APM survey (Efstathiou
& Moody 2001) and the SDSS (the points are from Tegmark et al.
2002 for galaxies in the magnitude range 21 < r∗ < 22 — see also
Dodelson et al. 2002) should also be free of this effect, but rep-
resent different mixtures of luminosities. The 2dFGRS points are
from the analysis of HTX02, and like the PSCz points (HTP00) and
the UZC points (THX02) have not been corrected for this effect,
whereas the Percival et al. 2dFGRS analysis should be unafflicted
by such red-tilting. The influential PD94 points (Table 1 from Pea-
cock & Dodds 1994), summarizing the state-of-the-art a decade ago,
are shown assuming IRAS bias of unity and the then fashionable
density parameter Ωm = 1.

Fig. 36.— Same as Figure 35, but restricted to a comparison
of decorrelated power spectra, those for SDSS, 2dFGRS and PSCz.
The similarity in the bumps and wiggles between the three power
spectra is intriguing.

Fig. 37.— Comparison of our results with other P (k) constraints.
The location of CMB, cluster, lensing and Lyα forest points in this
plane depends on the cosmic matter budget (and, for the CMB,
on the reionization optical depth τ), so requiring consistency with
SDSS constrains these cosmological parameters without assumptions
about the primordial power spectrum. This figure is for the case of a
“vanilla” flat scalar scale-invariant model with Ωm = 0.28, h = 0.72
and Ωb/Ωm = 0.16, τ = 0.17 (Spergel et al. 2003; Verde et al. 2003,
Tegmark et al. 2003b), assuming b∗ = 0.92 for the SDSS galaxies.

Figure 1: The agreement of the prediction by inflation and the observed
power spectrum, Fig. 37 in M. Tegmark et al, Astrop. J., 606, 702 (2004).
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